The 3D incompressible Navier–Stokes equations with partial hyperdissipation

The three‐dimensional incompressible Navier–Stokes equations with the hyperdissipation (−Δ)γ always possess global smooth solutions when γ≥54. Tao [6] and Barbato, Morandin and Romito [1] made logarithmic reductions in the dissipation and still obtained the global regularity. This paper makes a diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2019-08, Vol.292 (8), p.1823-1836
Hauptverfasser: Yang, Wanrong, Jiu, Quansen, Wu, Jiahong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The three‐dimensional incompressible Navier–Stokes equations with the hyperdissipation (−Δ)γ always possess global smooth solutions when γ≥54. Tao [6] and Barbato, Morandin and Romito [1] made logarithmic reductions in the dissipation and still obtained the global regularity. This paper makes a different type of reduction in the dissipation and proves the global existence and uniqueness in the H1‐functional setting.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201700176