The 3D incompressible Navier–Stokes equations with partial hyperdissipation
The three‐dimensional incompressible Navier–Stokes equations with the hyperdissipation (−Δ)γ always possess global smooth solutions when γ≥54. Tao [6] and Barbato, Morandin and Romito [1] made logarithmic reductions in the dissipation and still obtained the global regularity. This paper makes a diff...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2019-08, Vol.292 (8), p.1823-1836 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The three‐dimensional incompressible Navier–Stokes equations with the hyperdissipation (−Δ)γ always possess global smooth solutions when γ≥54. Tao [6] and Barbato, Morandin and Romito [1] made logarithmic reductions in the dissipation and still obtained the global regularity. This paper makes a different type of reduction in the dissipation and proves the global existence and uniqueness in the H1‐functional setting. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.201700176 |