Sharp Constant for Poincaré-Type Inequalities in the Hyperbolic Space

In this note, we establish a Poincaré-type inequality on the hyperbolic space ℍ n , namely ∥ u ∥ p ≤ C ( n , m , p ) ∥ ∇ g m u ∥ p for any u ∈ W m , p ( ℍ n ) . We prove that the sharp constant C ( n , m , p ) for the above inequality is C ( n , m , p ) = p p ′ / ( n − 1 ) 2 m / 2 if m is even , ( p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica vietnamica 2019-09, Vol.44 (3), p.781-795
Hauptverfasser: Ngô, Quốc Anh, Nguyen, Van Hoang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, we establish a Poincaré-type inequality on the hyperbolic space ℍ n , namely ∥ u ∥ p ≤ C ( n , m , p ) ∥ ∇ g m u ∥ p for any u ∈ W m , p ( ℍ n ) . We prove that the sharp constant C ( n , m , p ) for the above inequality is C ( n , m , p ) = p p ′ / ( n − 1 ) 2 m / 2 if m is even , ( p / ( n − 1 ) ) p p ′ / ( n − 1 ) 2 ( m − 1 ) / 2 if m is odd , with p ′ = p /( p − 1) and this sharp constant is never achieved in W m , p ( ℍ n ) . Our proofs rely on the symmetrization method extended to hyperbolic spaces.
ISSN:0251-4184
2315-4144
DOI:10.1007/s40306-018-0269-9