Sharp Constant for Poincaré-Type Inequalities in the Hyperbolic Space
In this note, we establish a Poincaré-type inequality on the hyperbolic space ℍ n , namely ∥ u ∥ p ≤ C ( n , m , p ) ∥ ∇ g m u ∥ p for any u ∈ W m , p ( ℍ n ) . We prove that the sharp constant C ( n , m , p ) for the above inequality is C ( n , m , p ) = p p ′ / ( n − 1 ) 2 m / 2 if m is even , ( p...
Gespeichert in:
Veröffentlicht in: | Acta mathematica vietnamica 2019-09, Vol.44 (3), p.781-795 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we establish a Poincaré-type inequality on the hyperbolic space
ℍ
n
, namely
∥
u
∥
p
≤
C
(
n
,
m
,
p
)
∥
∇
g
m
u
∥
p
for any
u
∈
W
m
,
p
(
ℍ
n
)
. We prove that the sharp constant
C
(
n
,
m
,
p
) for the above inequality is
C
(
n
,
m
,
p
)
=
p
p
′
/
(
n
−
1
)
2
m
/
2
if
m
is even
,
(
p
/
(
n
−
1
)
)
p
p
′
/
(
n
−
1
)
2
(
m
−
1
)
/
2
if
m
is odd
,
with
p
′
=
p
/(
p
− 1) and this sharp constant is never achieved in
W
m
,
p
(
ℍ
n
)
. Our proofs rely on the symmetrization method extended to hyperbolic spaces. |
---|---|
ISSN: | 0251-4184 2315-4144 |
DOI: | 10.1007/s40306-018-0269-9 |