On the Yamabe problem on contact Riemannian manifolds
A contact Riemannian manifold, whose complex structure is not necessarily integrable, is the generalization of the notion of a pseudohermitian manifold in CR geometry. The Tanaka–Webster–Tanno connection plays the role of the Tanaka–Webster connection for a pseudohermitian manifold. Conformal transf...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2019-10, Vol.56 (3), p.465-506 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A contact Riemannian manifold, whose complex structure is not necessarily integrable, is the generalization of the notion of a pseudohermitian manifold in CR geometry. The Tanaka–Webster–Tanno connection plays the role of the Tanaka–Webster connection for a pseudohermitian manifold. Conformal transformations and the Yamabe problem are also defined naturally in this setting. By using special frames and normal coordinates on a contact Riemannian manifold, we prove that if the complex structure is not integrable, the Yamabe invariant on a contact Riemannian manifold is always less than the Yamabe invariant of the Heisenberg group. So the Yamabe problem on a contact Riemannian manifold is always solvable. |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-019-09675-8 |