Complexity reduction for sign configurations through the KP II equation and its information-theoretic aspects

We provide a combinatorial setting to explore the information content associated with the fulfillment of the Kadomtsev-Petviashvili (KP) II equation. We start from a special family of solutions of KP II, namely, tau-functions of Wronskian type. A solution in this class can be expressed as a sum of e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2019-07, Vol.60 (7)
1. Verfasser: Angelelli, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a combinatorial setting to explore the information content associated with the fulfillment of the Kadomtsev-Petviashvili (KP) II equation. We start from a special family of solutions of KP II, namely, tau-functions of Wronskian type. A solution in this class can be expressed as a sum of exponentials, and we look at combinations of signs (signatures) for the nonvanishing terms in this sum. We prove a characterization of the signatures that return another solution of the KP II equation: they can be represented as choices of signs for columns and rows of a coefficient matrix, so we recover a function satisfying the whole KP hierarchy from this single constraint. The redundancy of this representation for different choices of the initial solution is investigated. Enumerative, information-theoretic, and geometric aspects of this construction are discussed.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5086165