Generating Wandering Subspaces for Doubly Commuting Covariant Representations
We obtain a Halmos–Richter-type wandering subspace theorem for covariant representations of C ∗ -correspondences. Further the notion of Cauchy dual and a version of Shimorin’s Wold-type decomposition for covariant representations of C ∗ -correspondences is explored and as an application a wandering...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2019-08, Vol.91 (4), p.1-21, Article 35 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Integral equations and operator theory |
container_volume | 91 |
creator | Trivedi, Harsh Veerabathiran, Shankar |
description | We obtain a Halmos–Richter-type wandering subspace theorem for covariant representations of
C
∗
-correspondences. Further the notion of Cauchy dual and a version of Shimorin’s Wold-type decomposition for covariant representations of
C
∗
-correspondences is explored and as an application a wandering subspace theorem for doubly commuting covariant representations is derived. Using this wandering subspace theorem generating wandering subspaces are characterized for covariant representations of product systems in terms of the doubly commutativity condition. |
doi_str_mv | 10.1007/s00020-019-2533-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267112638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267112638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1395e08b96f62c8c8dfc8993558a1b508c325d7e6ac3a5b12f2ba14271b84a623</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKsP4G7AdTS5aTKZpYxahYrgD7oLSZqRljYZk5lC396MI7hylUs433e5B6FzSi4pIeVVIoQAwYRWGDhjmB2gCZ3lH1nJ6hBNCCslFkA-jtFJSusMQwligh7nzruou5X_LN61X7o4TC-9Sa22LhVNiMVN6M1mX9Rhu-1_wDrsdFxp3xXPro0uOd_lhuDTKTpq9Ca5s993it7ubl_re7x4mj_U1wtsGRUdpqzijkhTiUaAlVYuGyurinEuNTWcSMuAL0sntGWaGwoNGJ2vKamRMy2ATdHF2NvG8NW71Kl16KPPKxWAKCkFwWSm6EjZGFKKrlFtXG113CtK1GBNjdZUtqYGa4rlDIyZ1A4mXPxr_j_0DdJYb28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267112638</pqid></control><display><type>article</type><title>Generating Wandering Subspaces for Doubly Commuting Covariant Representations</title><source>Springer Nature - Complete Springer Journals</source><creator>Trivedi, Harsh ; Veerabathiran, Shankar</creator><creatorcontrib>Trivedi, Harsh ; Veerabathiran, Shankar</creatorcontrib><description>We obtain a Halmos–Richter-type wandering subspace theorem for covariant representations of
C
∗
-correspondences. Further the notion of Cauchy dual and a version of Shimorin’s Wold-type decomposition for covariant representations of
C
∗
-correspondences is explored and as an application a wandering subspace theorem for doubly commuting covariant representations is derived. Using this wandering subspace theorem generating wandering subspaces are characterized for covariant representations of product systems in terms of the doubly commutativity condition.</description><identifier>ISSN: 0378-620X</identifier><identifier>EISSN: 1420-8989</identifier><identifier>DOI: 10.1007/s00020-019-2533-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Commutativity ; Mathematics ; Mathematics and Statistics ; Representations ; Subspaces ; Theorems</subject><ispartof>Integral equations and operator theory, 2019-08, Vol.91 (4), p.1-21, Article 35</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1395e08b96f62c8c8dfc8993558a1b508c325d7e6ac3a5b12f2ba14271b84a623</citedby><cites>FETCH-LOGICAL-c316t-1395e08b96f62c8c8dfc8993558a1b508c325d7e6ac3a5b12f2ba14271b84a623</cites><orcidid>0000-0003-1603-8591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00020-019-2533-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00020-019-2533-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Trivedi, Harsh</creatorcontrib><creatorcontrib>Veerabathiran, Shankar</creatorcontrib><title>Generating Wandering Subspaces for Doubly Commuting Covariant Representations</title><title>Integral equations and operator theory</title><addtitle>Integr. Equ. Oper. Theory</addtitle><description>We obtain a Halmos–Richter-type wandering subspace theorem for covariant representations of
C
∗
-correspondences. Further the notion of Cauchy dual and a version of Shimorin’s Wold-type decomposition for covariant representations of
C
∗
-correspondences is explored and as an application a wandering subspace theorem for doubly commuting covariant representations is derived. Using this wandering subspace theorem generating wandering subspaces are characterized for covariant representations of product systems in terms of the doubly commutativity condition.</description><subject>Analysis</subject><subject>Commutativity</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Representations</subject><subject>Subspaces</subject><subject>Theorems</subject><issn>0378-620X</issn><issn>1420-8989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEURoMoWKsP4G7AdTS5aTKZpYxahYrgD7oLSZqRljYZk5lC396MI7hylUs433e5B6FzSi4pIeVVIoQAwYRWGDhjmB2gCZ3lH1nJ6hBNCCslFkA-jtFJSusMQwligh7nzruou5X_LN61X7o4TC-9Sa22LhVNiMVN6M1mX9Rhu-1_wDrsdFxp3xXPro0uOd_lhuDTKTpq9Ca5s993it7ubl_re7x4mj_U1wtsGRUdpqzijkhTiUaAlVYuGyurinEuNTWcSMuAL0sntGWaGwoNGJ2vKamRMy2ATdHF2NvG8NW71Kl16KPPKxWAKCkFwWSm6EjZGFKKrlFtXG113CtK1GBNjdZUtqYGa4rlDIyZ1A4mXPxr_j_0DdJYb28</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Trivedi, Harsh</creator><creator>Veerabathiran, Shankar</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1603-8591</orcidid></search><sort><creationdate>20190801</creationdate><title>Generating Wandering Subspaces for Doubly Commuting Covariant Representations</title><author>Trivedi, Harsh ; Veerabathiran, Shankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1395e08b96f62c8c8dfc8993558a1b508c325d7e6ac3a5b12f2ba14271b84a623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Commutativity</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Representations</topic><topic>Subspaces</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trivedi, Harsh</creatorcontrib><creatorcontrib>Veerabathiran, Shankar</creatorcontrib><collection>CrossRef</collection><jtitle>Integral equations and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trivedi, Harsh</au><au>Veerabathiran, Shankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating Wandering Subspaces for Doubly Commuting Covariant Representations</atitle><jtitle>Integral equations and operator theory</jtitle><stitle>Integr. Equ. Oper. Theory</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>91</volume><issue>4</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><artnum>35</artnum><issn>0378-620X</issn><eissn>1420-8989</eissn><abstract>We obtain a Halmos–Richter-type wandering subspace theorem for covariant representations of
C
∗
-correspondences. Further the notion of Cauchy dual and a version of Shimorin’s Wold-type decomposition for covariant representations of
C
∗
-correspondences is explored and as an application a wandering subspace theorem for doubly commuting covariant representations is derived. Using this wandering subspace theorem generating wandering subspaces are characterized for covariant representations of product systems in terms of the doubly commutativity condition.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00020-019-2533-3</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1603-8591</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-620X |
ispartof | Integral equations and operator theory, 2019-08, Vol.91 (4), p.1-21, Article 35 |
issn | 0378-620X 1420-8989 |
language | eng |
recordid | cdi_proquest_journals_2267112638 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis Commutativity Mathematics Mathematics and Statistics Representations Subspaces Theorems |
title | Generating Wandering Subspaces for Doubly Commuting Covariant Representations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20Wandering%20Subspaces%20for%20Doubly%20Commuting%20Covariant%20Representations&rft.jtitle=Integral%20equations%20and%20operator%20theory&rft.au=Trivedi,%20Harsh&rft.date=2019-08-01&rft.volume=91&rft.issue=4&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.artnum=35&rft.issn=0378-620X&rft.eissn=1420-8989&rft_id=info:doi/10.1007/s00020-019-2533-3&rft_dat=%3Cproquest_cross%3E2267112638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267112638&rft_id=info:pmid/&rfr_iscdi=true |