Generating Wandering Subspaces for Doubly Commuting Covariant Representations

We obtain a Halmos–Richter-type wandering subspace theorem for covariant representations of C ∗ -correspondences. Further the notion of Cauchy dual and a version of Shimorin’s Wold-type decomposition for covariant representations of C ∗ -correspondences is explored and as an application a wandering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2019-08, Vol.91 (4), p.1-21, Article 35
Hauptverfasser: Trivedi, Harsh, Veerabathiran, Shankar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 4
container_start_page 1
container_title Integral equations and operator theory
container_volume 91
creator Trivedi, Harsh
Veerabathiran, Shankar
description We obtain a Halmos–Richter-type wandering subspace theorem for covariant representations of C ∗ -correspondences. Further the notion of Cauchy dual and a version of Shimorin’s Wold-type decomposition for covariant representations of C ∗ -correspondences is explored and as an application a wandering subspace theorem for doubly commuting covariant representations is derived. Using this wandering subspace theorem generating wandering subspaces are characterized for covariant representations of product systems in terms of the doubly commutativity condition.
doi_str_mv 10.1007/s00020-019-2533-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267112638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267112638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1395e08b96f62c8c8dfc8993558a1b508c325d7e6ac3a5b12f2ba14271b84a623</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKsP4G7AdTS5aTKZpYxahYrgD7oLSZqRljYZk5lC396MI7hylUs433e5B6FzSi4pIeVVIoQAwYRWGDhjmB2gCZ3lH1nJ6hBNCCslFkA-jtFJSusMQwligh7nzruou5X_LN61X7o4TC-9Sa22LhVNiMVN6M1mX9Rhu-1_wDrsdFxp3xXPro0uOd_lhuDTKTpq9Ca5s993it7ubl_re7x4mj_U1wtsGRUdpqzijkhTiUaAlVYuGyurinEuNTWcSMuAL0sntGWaGwoNGJ2vKamRMy2ATdHF2NvG8NW71Kl16KPPKxWAKCkFwWSm6EjZGFKKrlFtXG113CtK1GBNjdZUtqYGa4rlDIyZ1A4mXPxr_j_0DdJYb28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267112638</pqid></control><display><type>article</type><title>Generating Wandering Subspaces for Doubly Commuting Covariant Representations</title><source>Springer Nature - Complete Springer Journals</source><creator>Trivedi, Harsh ; Veerabathiran, Shankar</creator><creatorcontrib>Trivedi, Harsh ; Veerabathiran, Shankar</creatorcontrib><description>We obtain a Halmos–Richter-type wandering subspace theorem for covariant representations of C ∗ -correspondences. Further the notion of Cauchy dual and a version of Shimorin’s Wold-type decomposition for covariant representations of C ∗ -correspondences is explored and as an application a wandering subspace theorem for doubly commuting covariant representations is derived. Using this wandering subspace theorem generating wandering subspaces are characterized for covariant representations of product systems in terms of the doubly commutativity condition.</description><identifier>ISSN: 0378-620X</identifier><identifier>EISSN: 1420-8989</identifier><identifier>DOI: 10.1007/s00020-019-2533-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Commutativity ; Mathematics ; Mathematics and Statistics ; Representations ; Subspaces ; Theorems</subject><ispartof>Integral equations and operator theory, 2019-08, Vol.91 (4), p.1-21, Article 35</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1395e08b96f62c8c8dfc8993558a1b508c325d7e6ac3a5b12f2ba14271b84a623</citedby><cites>FETCH-LOGICAL-c316t-1395e08b96f62c8c8dfc8993558a1b508c325d7e6ac3a5b12f2ba14271b84a623</cites><orcidid>0000-0003-1603-8591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00020-019-2533-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00020-019-2533-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Trivedi, Harsh</creatorcontrib><creatorcontrib>Veerabathiran, Shankar</creatorcontrib><title>Generating Wandering Subspaces for Doubly Commuting Covariant Representations</title><title>Integral equations and operator theory</title><addtitle>Integr. Equ. Oper. Theory</addtitle><description>We obtain a Halmos–Richter-type wandering subspace theorem for covariant representations of C ∗ -correspondences. Further the notion of Cauchy dual and a version of Shimorin’s Wold-type decomposition for covariant representations of C ∗ -correspondences is explored and as an application a wandering subspace theorem for doubly commuting covariant representations is derived. Using this wandering subspace theorem generating wandering subspaces are characterized for covariant representations of product systems in terms of the doubly commutativity condition.</description><subject>Analysis</subject><subject>Commutativity</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Representations</subject><subject>Subspaces</subject><subject>Theorems</subject><issn>0378-620X</issn><issn>1420-8989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEURoMoWKsP4G7AdTS5aTKZpYxahYrgD7oLSZqRljYZk5lC396MI7hylUs433e5B6FzSi4pIeVVIoQAwYRWGDhjmB2gCZ3lH1nJ6hBNCCslFkA-jtFJSusMQwligh7nzruou5X_LN61X7o4TC-9Sa22LhVNiMVN6M1mX9Rhu-1_wDrsdFxp3xXPro0uOd_lhuDTKTpq9Ca5s993it7ubl_re7x4mj_U1wtsGRUdpqzijkhTiUaAlVYuGyurinEuNTWcSMuAL0sntGWaGwoNGJ2vKamRMy2ATdHF2NvG8NW71Kl16KPPKxWAKCkFwWSm6EjZGFKKrlFtXG113CtK1GBNjdZUtqYGa4rlDIyZ1A4mXPxr_j_0DdJYb28</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Trivedi, Harsh</creator><creator>Veerabathiran, Shankar</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1603-8591</orcidid></search><sort><creationdate>20190801</creationdate><title>Generating Wandering Subspaces for Doubly Commuting Covariant Representations</title><author>Trivedi, Harsh ; Veerabathiran, Shankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1395e08b96f62c8c8dfc8993558a1b508c325d7e6ac3a5b12f2ba14271b84a623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Commutativity</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Representations</topic><topic>Subspaces</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trivedi, Harsh</creatorcontrib><creatorcontrib>Veerabathiran, Shankar</creatorcontrib><collection>CrossRef</collection><jtitle>Integral equations and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trivedi, Harsh</au><au>Veerabathiran, Shankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating Wandering Subspaces for Doubly Commuting Covariant Representations</atitle><jtitle>Integral equations and operator theory</jtitle><stitle>Integr. Equ. Oper. Theory</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>91</volume><issue>4</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><artnum>35</artnum><issn>0378-620X</issn><eissn>1420-8989</eissn><abstract>We obtain a Halmos–Richter-type wandering subspace theorem for covariant representations of C ∗ -correspondences. Further the notion of Cauchy dual and a version of Shimorin’s Wold-type decomposition for covariant representations of C ∗ -correspondences is explored and as an application a wandering subspace theorem for doubly commuting covariant representations is derived. Using this wandering subspace theorem generating wandering subspaces are characterized for covariant representations of product systems in terms of the doubly commutativity condition.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00020-019-2533-3</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1603-8591</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-620X
ispartof Integral equations and operator theory, 2019-08, Vol.91 (4), p.1-21, Article 35
issn 0378-620X
1420-8989
language eng
recordid cdi_proquest_journals_2267112638
source Springer Nature - Complete Springer Journals
subjects Analysis
Commutativity
Mathematics
Mathematics and Statistics
Representations
Subspaces
Theorems
title Generating Wandering Subspaces for Doubly Commuting Covariant Representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20Wandering%20Subspaces%20for%20Doubly%20Commuting%20Covariant%20Representations&rft.jtitle=Integral%20equations%20and%20operator%20theory&rft.au=Trivedi,%20Harsh&rft.date=2019-08-01&rft.volume=91&rft.issue=4&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.artnum=35&rft.issn=0378-620X&rft.eissn=1420-8989&rft_id=info:doi/10.1007/s00020-019-2533-3&rft_dat=%3Cproquest_cross%3E2267112638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267112638&rft_id=info:pmid/&rfr_iscdi=true