Generating Wandering Subspaces for Doubly Commuting Covariant Representations

We obtain a Halmos–Richter-type wandering subspace theorem for covariant representations of C ∗ -correspondences. Further the notion of Cauchy dual and a version of Shimorin’s Wold-type decomposition for covariant representations of C ∗ -correspondences is explored and as an application a wandering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2019-08, Vol.91 (4), p.1-21, Article 35
Hauptverfasser: Trivedi, Harsh, Veerabathiran, Shankar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain a Halmos–Richter-type wandering subspace theorem for covariant representations of C ∗ -correspondences. Further the notion of Cauchy dual and a version of Shimorin’s Wold-type decomposition for covariant representations of C ∗ -correspondences is explored and as an application a wandering subspace theorem for doubly commuting covariant representations is derived. Using this wandering subspace theorem generating wandering subspaces are characterized for covariant representations of product systems in terms of the doubly commutativity condition.
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-019-2533-3