Generating Wandering Subspaces for Doubly Commuting Covariant Representations
We obtain a Halmos–Richter-type wandering subspace theorem for covariant representations of C ∗ -correspondences. Further the notion of Cauchy dual and a version of Shimorin’s Wold-type decomposition for covariant representations of C ∗ -correspondences is explored and as an application a wandering...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2019-08, Vol.91 (4), p.1-21, Article 35 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain a Halmos–Richter-type wandering subspace theorem for covariant representations of
C
∗
-correspondences. Further the notion of Cauchy dual and a version of Shimorin’s Wold-type decomposition for covariant representations of
C
∗
-correspondences is explored and as an application a wandering subspace theorem for doubly commuting covariant representations is derived. Using this wandering subspace theorem generating wandering subspaces are characterized for covariant representations of product systems in terms of the doubly commutativity condition. |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-019-2533-3 |