Novel method for the production of SiC micro and nanopatterns
In this paper we report on a novel, large area method to produce SiC nano- and micro patterns at room temperature where the compound and pattern formation happens in one step. We have previously demonstrated that SiC can be produced by noble gas irradiation of a Si/C multilayer system utilizing the...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2019-08, Vol.372, p.427-433 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we report on a novel, large area method to produce SiC nano- and micro patterns at room temperature where the compound and pattern formation happens in one step. We have previously demonstrated that SiC can be produced by noble gas irradiation of a Si/C multilayer system utilizing the ion beam mixing (IBM) taking place at the interfaces. Here we show that by applying IBM in samples masked in any desired way patterned SiC surfaces, micro and nanostructures, result. Two different masking layers were applied to demonstrate the capabilities of the method; a Langmuir-Blodgett (LB) film of 590 nm silica nanoparticles and a lithographic grid, of 2 μm periodicity, mounted to the surface of a Si/C multilayer system. The systems were irradiated by Xe+ ions of 120 keV. The samples before and after IBM have been analyzed by AFM, SEM and AES depth profiling, proving that patterning occurred: the non-covered areas became SiC rich regions, while the covered areas remained untouched. As a possible application for the patterned samples, the gold-coated LB patterned nanostructure was used for surface enhanced Raman spectroscopic detection of an organic dye molecule (R6G) demonstrating the efficiency of IBM for producing SERS substrates consisting of a very stable compound like SiC.
[Display omitted]
•A novel method was demonstrated for the production of SiC micro and nanopatterns.•Patterning and SiC compound formation happened in one step at room temperature.•The SiC formation was proved by AES depth profiling.•Two different structures were presented.•The method can be considered as a possibility to fabricate SERS substrates. |
---|---|
ISSN: | 0257-8972 1879-3347 |
DOI: | 10.1016/j.surfcoat.2019.05.061 |