Tensor Complementarity Problems—Part I: Basic Theory

Tensors (hypermatrices) are multidimensional analogs of matrices. The tensor complementarity problem is a class of nonlinear complementarity problems with the involved function being defined by a tensor, which is also a direct and natural extension of the linear complementarity problem. In the last...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2019-10, Vol.183 (1), p.1-23
Hauptverfasser: Huang, Zheng-Hai, Qi, Liqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tensors (hypermatrices) are multidimensional analogs of matrices. The tensor complementarity problem is a class of nonlinear complementarity problems with the involved function being defined by a tensor, which is also a direct and natural extension of the linear complementarity problem. In the last few years, the tensor complementarity problem has attracted a lot of attention, and has been studied extensively, from theory to solution methods and applications. This work, with its three parts, aims at contributing to review the state-of-the-art of studies for the tensor complementarity problem and related models. In this part, we describe the theoretical developments for the tensor complementarity problem and related models, including the nonemptiness and compactness of the solution set, global uniqueness and solvability, error bound theory, stability and continuity analysis, and so on. The developments of solution methods and applications for the tensor complementarity problem are given in the second part and the third part, respectively. Some further issues are proposed in all the parts.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-019-01566-z