Synergistic effects of nanoparticle heating and amoxicillin on H. pylori inhibition
•Achieved high heating performance Mn0.3Fe2.7O4/SiO2 nanoparticles.•Magnetic hyperthermia first used for H. pylori growth inhibition.•Ultralow concentration of nanoparticles can effectively suppress H. pylori growth.•Amoxicillin loaded nanoparticle platform can reduce bacteria survival synergistical...
Gespeichert in:
Veröffentlicht in: | Journal of magnetism and magnetic materials 2019-09, Vol.485, p.95-104 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104 |
---|---|
container_issue | |
container_start_page | 95 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 485 |
creator | Wu, Tao Wang, Lichen Gong, Meiliang Lin, Yunjuan Xu, Yaping Ye, Ling Yu, Xiang Liu, Jing Liu, Jianwei He, Shuli Zeng, Hao Wang, Gangshi |
description | •Achieved high heating performance Mn0.3Fe2.7O4/SiO2 nanoparticles.•Magnetic hyperthermia first used for H. pylori growth inhibition.•Ultralow concentration of nanoparticles can effectively suppress H. pylori growth.•Amoxicillin loaded nanoparticle platform can reduce bacteria survival synergistically.
We report the design and development of a dual-functional magnetic nanoparticle platform for potential treatment of H. pylori infection. We show that an ultralow concentration of Mn0.3Fe2.7O4@SiO2 nanoparticles subjected to a moderate AC magnetic field, without bulk heating effect, can deposit heat locally and effectively inhibit H. pylori growth and virulence in vitro. When coupled with antibiotic amoxicillin, the dual-functional amoxicillin-Mn0.3Fe2.7O4@SiO2 further decreases the bacteria survival rate by a factor of 7 and 5, respectively, compared to amoxicillin treatment and nanoparticle heating alone. The synergistic effect can be partially attributed to the heating induced damage to the cell membrane and protective biofilm, which may increase the permeability of antibiotics to bacteria. Our method provides a viable approach to treat H. pylori infection, with the potential of reducing side effects and enhancing the efficacy for combating drug resistant strains. |
doi_str_mv | 10.1016/j.jmmm.2019.04.076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2266342964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885319305888</els_id><sourcerecordid>2266342964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-466cb8bfd702205b1959ac8211fdaff1dec9dcfed7547b7405ae2281dfd0d83e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz61JmqYteJFFXWHBw-o5pMlkN6VNatIV99_bZT17Ghje553hQeiOkpwSKh66vBuGIWeENjnhOanEGVrQuioyXglxjhakIDyr67K4RFcpdYQQymuxQJvNwUPcujQ5jcFa0FPCwWKvfBhVnLc94B2oyfktVt5gNYQfp13fO4-Dx6scj4c-RIed37nWTS74G3RhVZ_g9m9eo8-X54_lKlu_v74tn9aZLkQ5ZVwI3datNRVhjJQtbcpG6ZpRao2ylhrQjdEWTFXyqq04KRUwVlNjDTF1AcU1uj_1jjF87SFNsgv76OeTkjEhCs4awecUO6V0DClFsHKMblDxICmRR3myk0d58ihPEi5neTP0eIJg_v_bQZRJO_AajIuzImmC-w__BZileak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266342964</pqid></control><display><type>article</type><title>Synergistic effects of nanoparticle heating and amoxicillin on H. pylori inhibition</title><source>Elsevier ScienceDirect Journals</source><creator>Wu, Tao ; Wang, Lichen ; Gong, Meiliang ; Lin, Yunjuan ; Xu, Yaping ; Ye, Ling ; Yu, Xiang ; Liu, Jing ; Liu, Jianwei ; He, Shuli ; Zeng, Hao ; Wang, Gangshi</creator><creatorcontrib>Wu, Tao ; Wang, Lichen ; Gong, Meiliang ; Lin, Yunjuan ; Xu, Yaping ; Ye, Ling ; Yu, Xiang ; Liu, Jing ; Liu, Jianwei ; He, Shuli ; Zeng, Hao ; Wang, Gangshi</creatorcontrib><description>•Achieved high heating performance Mn0.3Fe2.7O4/SiO2 nanoparticles.•Magnetic hyperthermia first used for H. pylori growth inhibition.•Ultralow concentration of nanoparticles can effectively suppress H. pylori growth.•Amoxicillin loaded nanoparticle platform can reduce bacteria survival synergistically.
We report the design and development of a dual-functional magnetic nanoparticle platform for potential treatment of H. pylori infection. We show that an ultralow concentration of Mn0.3Fe2.7O4@SiO2 nanoparticles subjected to a moderate AC magnetic field, without bulk heating effect, can deposit heat locally and effectively inhibit H. pylori growth and virulence in vitro. When coupled with antibiotic amoxicillin, the dual-functional amoxicillin-Mn0.3Fe2.7O4@SiO2 further decreases the bacteria survival rate by a factor of 7 and 5, respectively, compared to amoxicillin treatment and nanoparticle heating alone. The synergistic effect can be partially attributed to the heating induced damage to the cell membrane and protective biofilm, which may increase the permeability of antibiotics to bacteria. Our method provides a viable approach to treat H. pylori infection, with the potential of reducing side effects and enhancing the efficacy for combating drug resistant strains.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2019.04.076</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amoxicillin ; Antibiotics ; Bacteria ; Cell membranes ; Dual functional ; Heating ; Helicobacter pylori ; High temperature effects ; Magnetic hyperthermia ; Magnetic permeability ; Nanoparticles ; Side effects ; Silicon dioxide ; Synergistic effect ; Virulence</subject><ispartof>Journal of magnetism and magnetic materials, 2019-09, Vol.485, p.95-104</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-466cb8bfd702205b1959ac8211fdaff1dec9dcfed7547b7405ae2281dfd0d83e3</citedby><cites>FETCH-LOGICAL-c365t-466cb8bfd702205b1959ac8211fdaff1dec9dcfed7547b7405ae2281dfd0d83e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304885319305888$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Wang, Lichen</creatorcontrib><creatorcontrib>Gong, Meiliang</creatorcontrib><creatorcontrib>Lin, Yunjuan</creatorcontrib><creatorcontrib>Xu, Yaping</creatorcontrib><creatorcontrib>Ye, Ling</creatorcontrib><creatorcontrib>Yu, Xiang</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Liu, Jianwei</creatorcontrib><creatorcontrib>He, Shuli</creatorcontrib><creatorcontrib>Zeng, Hao</creatorcontrib><creatorcontrib>Wang, Gangshi</creatorcontrib><title>Synergistic effects of nanoparticle heating and amoxicillin on H. pylori inhibition</title><title>Journal of magnetism and magnetic materials</title><description>•Achieved high heating performance Mn0.3Fe2.7O4/SiO2 nanoparticles.•Magnetic hyperthermia first used for H. pylori growth inhibition.•Ultralow concentration of nanoparticles can effectively suppress H. pylori growth.•Amoxicillin loaded nanoparticle platform can reduce bacteria survival synergistically.
We report the design and development of a dual-functional magnetic nanoparticle platform for potential treatment of H. pylori infection. We show that an ultralow concentration of Mn0.3Fe2.7O4@SiO2 nanoparticles subjected to a moderate AC magnetic field, without bulk heating effect, can deposit heat locally and effectively inhibit H. pylori growth and virulence in vitro. When coupled with antibiotic amoxicillin, the dual-functional amoxicillin-Mn0.3Fe2.7O4@SiO2 further decreases the bacteria survival rate by a factor of 7 and 5, respectively, compared to amoxicillin treatment and nanoparticle heating alone. The synergistic effect can be partially attributed to the heating induced damage to the cell membrane and protective biofilm, which may increase the permeability of antibiotics to bacteria. Our method provides a viable approach to treat H. pylori infection, with the potential of reducing side effects and enhancing the efficacy for combating drug resistant strains.</description><subject>Amoxicillin</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Cell membranes</subject><subject>Dual functional</subject><subject>Heating</subject><subject>Helicobacter pylori</subject><subject>High temperature effects</subject><subject>Magnetic hyperthermia</subject><subject>Magnetic permeability</subject><subject>Nanoparticles</subject><subject>Side effects</subject><subject>Silicon dioxide</subject><subject>Synergistic effect</subject><subject>Virulence</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Bz61JmqYteJFFXWHBw-o5pMlkN6VNatIV99_bZT17Ghje553hQeiOkpwSKh66vBuGIWeENjnhOanEGVrQuioyXglxjhakIDyr67K4RFcpdYQQymuxQJvNwUPcujQ5jcFa0FPCwWKvfBhVnLc94B2oyfktVt5gNYQfp13fO4-Dx6scj4c-RIed37nWTS74G3RhVZ_g9m9eo8-X54_lKlu_v74tn9aZLkQ5ZVwI3datNRVhjJQtbcpG6ZpRao2ylhrQjdEWTFXyqq04KRUwVlNjDTF1AcU1uj_1jjF87SFNsgv76OeTkjEhCs4awecUO6V0DClFsHKMblDxICmRR3myk0d58ihPEi5neTP0eIJg_v_bQZRJO_AajIuzImmC-w__BZileak</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Wu, Tao</creator><creator>Wang, Lichen</creator><creator>Gong, Meiliang</creator><creator>Lin, Yunjuan</creator><creator>Xu, Yaping</creator><creator>Ye, Ling</creator><creator>Yu, Xiang</creator><creator>Liu, Jing</creator><creator>Liu, Jianwei</creator><creator>He, Shuli</creator><creator>Zeng, Hao</creator><creator>Wang, Gangshi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190901</creationdate><title>Synergistic effects of nanoparticle heating and amoxicillin on H. pylori inhibition</title><author>Wu, Tao ; Wang, Lichen ; Gong, Meiliang ; Lin, Yunjuan ; Xu, Yaping ; Ye, Ling ; Yu, Xiang ; Liu, Jing ; Liu, Jianwei ; He, Shuli ; Zeng, Hao ; Wang, Gangshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-466cb8bfd702205b1959ac8211fdaff1dec9dcfed7547b7405ae2281dfd0d83e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amoxicillin</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Cell membranes</topic><topic>Dual functional</topic><topic>Heating</topic><topic>Helicobacter pylori</topic><topic>High temperature effects</topic><topic>Magnetic hyperthermia</topic><topic>Magnetic permeability</topic><topic>Nanoparticles</topic><topic>Side effects</topic><topic>Silicon dioxide</topic><topic>Synergistic effect</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Wang, Lichen</creatorcontrib><creatorcontrib>Gong, Meiliang</creatorcontrib><creatorcontrib>Lin, Yunjuan</creatorcontrib><creatorcontrib>Xu, Yaping</creatorcontrib><creatorcontrib>Ye, Ling</creatorcontrib><creatorcontrib>Yu, Xiang</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Liu, Jianwei</creatorcontrib><creatorcontrib>He, Shuli</creatorcontrib><creatorcontrib>Zeng, Hao</creatorcontrib><creatorcontrib>Wang, Gangshi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tao</au><au>Wang, Lichen</au><au>Gong, Meiliang</au><au>Lin, Yunjuan</au><au>Xu, Yaping</au><au>Ye, Ling</au><au>Yu, Xiang</au><au>Liu, Jing</au><au>Liu, Jianwei</au><au>He, Shuli</au><au>Zeng, Hao</au><au>Wang, Gangshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic effects of nanoparticle heating and amoxicillin on H. pylori inhibition</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>485</volume><spage>95</spage><epage>104</epage><pages>95-104</pages><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•Achieved high heating performance Mn0.3Fe2.7O4/SiO2 nanoparticles.•Magnetic hyperthermia first used for H. pylori growth inhibition.•Ultralow concentration of nanoparticles can effectively suppress H. pylori growth.•Amoxicillin loaded nanoparticle platform can reduce bacteria survival synergistically.
We report the design and development of a dual-functional magnetic nanoparticle platform for potential treatment of H. pylori infection. We show that an ultralow concentration of Mn0.3Fe2.7O4@SiO2 nanoparticles subjected to a moderate AC magnetic field, without bulk heating effect, can deposit heat locally and effectively inhibit H. pylori growth and virulence in vitro. When coupled with antibiotic amoxicillin, the dual-functional amoxicillin-Mn0.3Fe2.7O4@SiO2 further decreases the bacteria survival rate by a factor of 7 and 5, respectively, compared to amoxicillin treatment and nanoparticle heating alone. The synergistic effect can be partially attributed to the heating induced damage to the cell membrane and protective biofilm, which may increase the permeability of antibiotics to bacteria. Our method provides a viable approach to treat H. pylori infection, with the potential of reducing side effects and enhancing the efficacy for combating drug resistant strains.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2019.04.076</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2019-09, Vol.485, p.95-104 |
issn | 0304-8853 1873-4766 |
language | eng |
recordid | cdi_proquest_journals_2266342964 |
source | Elsevier ScienceDirect Journals |
subjects | Amoxicillin Antibiotics Bacteria Cell membranes Dual functional Heating Helicobacter pylori High temperature effects Magnetic hyperthermia Magnetic permeability Nanoparticles Side effects Silicon dioxide Synergistic effect Virulence |
title | Synergistic effects of nanoparticle heating and amoxicillin on H. pylori inhibition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20effects%20of%20nanoparticle%20heating%20and%20amoxicillin%20on%20H.%20pylori%20inhibition&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Wu,%20Tao&rft.date=2019-09-01&rft.volume=485&rft.spage=95&rft.epage=104&rft.pages=95-104&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2019.04.076&rft_dat=%3Cproquest_cross%3E2266342964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266342964&rft_id=info:pmid/&rft_els_id=S0304885319305888&rfr_iscdi=true |