Synergistic effects of nanoparticle heating and amoxicillin on H. pylori inhibition

•Achieved high heating performance Mn0.3Fe2.7O4/SiO2 nanoparticles.•Magnetic hyperthermia first used for H. pylori growth inhibition.•Ultralow concentration of nanoparticles can effectively suppress H. pylori growth.•Amoxicillin loaded nanoparticle platform can reduce bacteria survival synergistical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2019-09, Vol.485, p.95-104
Hauptverfasser: Wu, Tao, Wang, Lichen, Gong, Meiliang, Lin, Yunjuan, Xu, Yaping, Ye, Ling, Yu, Xiang, Liu, Jing, Liu, Jianwei, He, Shuli, Zeng, Hao, Wang, Gangshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue
container_start_page 95
container_title Journal of magnetism and magnetic materials
container_volume 485
creator Wu, Tao
Wang, Lichen
Gong, Meiliang
Lin, Yunjuan
Xu, Yaping
Ye, Ling
Yu, Xiang
Liu, Jing
Liu, Jianwei
He, Shuli
Zeng, Hao
Wang, Gangshi
description •Achieved high heating performance Mn0.3Fe2.7O4/SiO2 nanoparticles.•Magnetic hyperthermia first used for H. pylori growth inhibition.•Ultralow concentration of nanoparticles can effectively suppress H. pylori growth.•Amoxicillin loaded nanoparticle platform can reduce bacteria survival synergistically. We report the design and development of a dual-functional magnetic nanoparticle platform for potential treatment of H. pylori infection. We show that an ultralow concentration of Mn0.3Fe2.7O4@SiO2 nanoparticles subjected to a moderate AC magnetic field, without bulk heating effect, can deposit heat locally and effectively inhibit H. pylori growth and virulence in vitro. When coupled with antibiotic amoxicillin, the dual-functional amoxicillin-Mn0.3Fe2.7O4@SiO2 further decreases the bacteria survival rate by a factor of 7 and 5, respectively, compared to amoxicillin treatment and nanoparticle heating alone. The synergistic effect can be partially attributed to the heating induced damage to the cell membrane and protective biofilm, which may increase the permeability of antibiotics to bacteria. Our method provides a viable approach to treat H. pylori infection, with the potential of reducing side effects and enhancing the efficacy for combating drug resistant strains.
doi_str_mv 10.1016/j.jmmm.2019.04.076
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2266342964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885319305888</els_id><sourcerecordid>2266342964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-466cb8bfd702205b1959ac8211fdaff1dec9dcfed7547b7405ae2281dfd0d83e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz61JmqYteJFFXWHBw-o5pMlkN6VNatIV99_bZT17Ghje553hQeiOkpwSKh66vBuGIWeENjnhOanEGVrQuioyXglxjhakIDyr67K4RFcpdYQQymuxQJvNwUPcujQ5jcFa0FPCwWKvfBhVnLc94B2oyfktVt5gNYQfp13fO4-Dx6scj4c-RIed37nWTS74G3RhVZ_g9m9eo8-X54_lKlu_v74tn9aZLkQ5ZVwI3datNRVhjJQtbcpG6ZpRao2ylhrQjdEWTFXyqq04KRUwVlNjDTF1AcU1uj_1jjF87SFNsgv76OeTkjEhCs4awecUO6V0DClFsHKMblDxICmRR3myk0d58ihPEi5neTP0eIJg_v_bQZRJO_AajIuzImmC-w__BZileak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266342964</pqid></control><display><type>article</type><title>Synergistic effects of nanoparticle heating and amoxicillin on H. pylori inhibition</title><source>Elsevier ScienceDirect Journals</source><creator>Wu, Tao ; Wang, Lichen ; Gong, Meiliang ; Lin, Yunjuan ; Xu, Yaping ; Ye, Ling ; Yu, Xiang ; Liu, Jing ; Liu, Jianwei ; He, Shuli ; Zeng, Hao ; Wang, Gangshi</creator><creatorcontrib>Wu, Tao ; Wang, Lichen ; Gong, Meiliang ; Lin, Yunjuan ; Xu, Yaping ; Ye, Ling ; Yu, Xiang ; Liu, Jing ; Liu, Jianwei ; He, Shuli ; Zeng, Hao ; Wang, Gangshi</creatorcontrib><description>•Achieved high heating performance Mn0.3Fe2.7O4/SiO2 nanoparticles.•Magnetic hyperthermia first used for H. pylori growth inhibition.•Ultralow concentration of nanoparticles can effectively suppress H. pylori growth.•Amoxicillin loaded nanoparticle platform can reduce bacteria survival synergistically. We report the design and development of a dual-functional magnetic nanoparticle platform for potential treatment of H. pylori infection. We show that an ultralow concentration of Mn0.3Fe2.7O4@SiO2 nanoparticles subjected to a moderate AC magnetic field, without bulk heating effect, can deposit heat locally and effectively inhibit H. pylori growth and virulence in vitro. When coupled with antibiotic amoxicillin, the dual-functional amoxicillin-Mn0.3Fe2.7O4@SiO2 further decreases the bacteria survival rate by a factor of 7 and 5, respectively, compared to amoxicillin treatment and nanoparticle heating alone. The synergistic effect can be partially attributed to the heating induced damage to the cell membrane and protective biofilm, which may increase the permeability of antibiotics to bacteria. Our method provides a viable approach to treat H. pylori infection, with the potential of reducing side effects and enhancing the efficacy for combating drug resistant strains.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2019.04.076</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amoxicillin ; Antibiotics ; Bacteria ; Cell membranes ; Dual functional ; Heating ; Helicobacter pylori ; High temperature effects ; Magnetic hyperthermia ; Magnetic permeability ; Nanoparticles ; Side effects ; Silicon dioxide ; Synergistic effect ; Virulence</subject><ispartof>Journal of magnetism and magnetic materials, 2019-09, Vol.485, p.95-104</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-466cb8bfd702205b1959ac8211fdaff1dec9dcfed7547b7405ae2281dfd0d83e3</citedby><cites>FETCH-LOGICAL-c365t-466cb8bfd702205b1959ac8211fdaff1dec9dcfed7547b7405ae2281dfd0d83e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304885319305888$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Wang, Lichen</creatorcontrib><creatorcontrib>Gong, Meiliang</creatorcontrib><creatorcontrib>Lin, Yunjuan</creatorcontrib><creatorcontrib>Xu, Yaping</creatorcontrib><creatorcontrib>Ye, Ling</creatorcontrib><creatorcontrib>Yu, Xiang</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Liu, Jianwei</creatorcontrib><creatorcontrib>He, Shuli</creatorcontrib><creatorcontrib>Zeng, Hao</creatorcontrib><creatorcontrib>Wang, Gangshi</creatorcontrib><title>Synergistic effects of nanoparticle heating and amoxicillin on H. pylori inhibition</title><title>Journal of magnetism and magnetic materials</title><description>•Achieved high heating performance Mn0.3Fe2.7O4/SiO2 nanoparticles.•Magnetic hyperthermia first used for H. pylori growth inhibition.•Ultralow concentration of nanoparticles can effectively suppress H. pylori growth.•Amoxicillin loaded nanoparticle platform can reduce bacteria survival synergistically. We report the design and development of a dual-functional magnetic nanoparticle platform for potential treatment of H. pylori infection. We show that an ultralow concentration of Mn0.3Fe2.7O4@SiO2 nanoparticles subjected to a moderate AC magnetic field, without bulk heating effect, can deposit heat locally and effectively inhibit H. pylori growth and virulence in vitro. When coupled with antibiotic amoxicillin, the dual-functional amoxicillin-Mn0.3Fe2.7O4@SiO2 further decreases the bacteria survival rate by a factor of 7 and 5, respectively, compared to amoxicillin treatment and nanoparticle heating alone. The synergistic effect can be partially attributed to the heating induced damage to the cell membrane and protective biofilm, which may increase the permeability of antibiotics to bacteria. Our method provides a viable approach to treat H. pylori infection, with the potential of reducing side effects and enhancing the efficacy for combating drug resistant strains.</description><subject>Amoxicillin</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Cell membranes</subject><subject>Dual functional</subject><subject>Heating</subject><subject>Helicobacter pylori</subject><subject>High temperature effects</subject><subject>Magnetic hyperthermia</subject><subject>Magnetic permeability</subject><subject>Nanoparticles</subject><subject>Side effects</subject><subject>Silicon dioxide</subject><subject>Synergistic effect</subject><subject>Virulence</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Bz61JmqYteJFFXWHBw-o5pMlkN6VNatIV99_bZT17Ghje553hQeiOkpwSKh66vBuGIWeENjnhOanEGVrQuioyXglxjhakIDyr67K4RFcpdYQQymuxQJvNwUPcujQ5jcFa0FPCwWKvfBhVnLc94B2oyfktVt5gNYQfp13fO4-Dx6scj4c-RIed37nWTS74G3RhVZ_g9m9eo8-X54_lKlu_v74tn9aZLkQ5ZVwI3datNRVhjJQtbcpG6ZpRao2ylhrQjdEWTFXyqq04KRUwVlNjDTF1AcU1uj_1jjF87SFNsgv76OeTkjEhCs4awecUO6V0DClFsHKMblDxICmRR3myk0d58ihPEi5neTP0eIJg_v_bQZRJO_AajIuzImmC-w__BZileak</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Wu, Tao</creator><creator>Wang, Lichen</creator><creator>Gong, Meiliang</creator><creator>Lin, Yunjuan</creator><creator>Xu, Yaping</creator><creator>Ye, Ling</creator><creator>Yu, Xiang</creator><creator>Liu, Jing</creator><creator>Liu, Jianwei</creator><creator>He, Shuli</creator><creator>Zeng, Hao</creator><creator>Wang, Gangshi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190901</creationdate><title>Synergistic effects of nanoparticle heating and amoxicillin on H. pylori inhibition</title><author>Wu, Tao ; Wang, Lichen ; Gong, Meiliang ; Lin, Yunjuan ; Xu, Yaping ; Ye, Ling ; Yu, Xiang ; Liu, Jing ; Liu, Jianwei ; He, Shuli ; Zeng, Hao ; Wang, Gangshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-466cb8bfd702205b1959ac8211fdaff1dec9dcfed7547b7405ae2281dfd0d83e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amoxicillin</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Cell membranes</topic><topic>Dual functional</topic><topic>Heating</topic><topic>Helicobacter pylori</topic><topic>High temperature effects</topic><topic>Magnetic hyperthermia</topic><topic>Magnetic permeability</topic><topic>Nanoparticles</topic><topic>Side effects</topic><topic>Silicon dioxide</topic><topic>Synergistic effect</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Wang, Lichen</creatorcontrib><creatorcontrib>Gong, Meiliang</creatorcontrib><creatorcontrib>Lin, Yunjuan</creatorcontrib><creatorcontrib>Xu, Yaping</creatorcontrib><creatorcontrib>Ye, Ling</creatorcontrib><creatorcontrib>Yu, Xiang</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Liu, Jianwei</creatorcontrib><creatorcontrib>He, Shuli</creatorcontrib><creatorcontrib>Zeng, Hao</creatorcontrib><creatorcontrib>Wang, Gangshi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tao</au><au>Wang, Lichen</au><au>Gong, Meiliang</au><au>Lin, Yunjuan</au><au>Xu, Yaping</au><au>Ye, Ling</au><au>Yu, Xiang</au><au>Liu, Jing</au><au>Liu, Jianwei</au><au>He, Shuli</au><au>Zeng, Hao</au><au>Wang, Gangshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic effects of nanoparticle heating and amoxicillin on H. pylori inhibition</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>485</volume><spage>95</spage><epage>104</epage><pages>95-104</pages><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•Achieved high heating performance Mn0.3Fe2.7O4/SiO2 nanoparticles.•Magnetic hyperthermia first used for H. pylori growth inhibition.•Ultralow concentration of nanoparticles can effectively suppress H. pylori growth.•Amoxicillin loaded nanoparticle platform can reduce bacteria survival synergistically. We report the design and development of a dual-functional magnetic nanoparticle platform for potential treatment of H. pylori infection. We show that an ultralow concentration of Mn0.3Fe2.7O4@SiO2 nanoparticles subjected to a moderate AC magnetic field, without bulk heating effect, can deposit heat locally and effectively inhibit H. pylori growth and virulence in vitro. When coupled with antibiotic amoxicillin, the dual-functional amoxicillin-Mn0.3Fe2.7O4@SiO2 further decreases the bacteria survival rate by a factor of 7 and 5, respectively, compared to amoxicillin treatment and nanoparticle heating alone. The synergistic effect can be partially attributed to the heating induced damage to the cell membrane and protective biofilm, which may increase the permeability of antibiotics to bacteria. Our method provides a viable approach to treat H. pylori infection, with the potential of reducing side effects and enhancing the efficacy for combating drug resistant strains.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2019.04.076</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2019-09, Vol.485, p.95-104
issn 0304-8853
1873-4766
language eng
recordid cdi_proquest_journals_2266342964
source Elsevier ScienceDirect Journals
subjects Amoxicillin
Antibiotics
Bacteria
Cell membranes
Dual functional
Heating
Helicobacter pylori
High temperature effects
Magnetic hyperthermia
Magnetic permeability
Nanoparticles
Side effects
Silicon dioxide
Synergistic effect
Virulence
title Synergistic effects of nanoparticle heating and amoxicillin on H. pylori inhibition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20effects%20of%20nanoparticle%20heating%20and%20amoxicillin%20on%20H.%20pylori%20inhibition&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Wu,%20Tao&rft.date=2019-09-01&rft.volume=485&rft.spage=95&rft.epage=104&rft.pages=95-104&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2019.04.076&rft_dat=%3Cproquest_cross%3E2266342964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266342964&rft_id=info:pmid/&rft_els_id=S0304885319305888&rfr_iscdi=true