Local characteristics and tangency of vector-valued martingales

This paper is devoted to tangent martingales in Banach spaces. We provide the definition of tangency through local characteristics, basic \(L^p\)- and \(\phi\)-estimates, a precise construction of a decoupled tangent martingale, new estimates for vector-valued stochastic integrals, and several other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-09
1. Verfasser: Yaroslavtsev, Ivan S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yaroslavtsev, Ivan S
description This paper is devoted to tangent martingales in Banach spaces. We provide the definition of tangency through local characteristics, basic \(L^p\)- and \(\phi\)-estimates, a precise construction of a decoupled tangent martingale, new estimates for vector-valued stochastic integrals, and several other claims concerning tangent martingales and local characteristics in infinite dimensions. This work extends various real-valued and vector-valued results in this direction e.g. due to Grigelionis, Hitczenko, Jacod, Kallenberg, Kwapie\'{n}, McConnell, and Woyczy\'{n}ski. The vast majority of the assertions presented in the paper is done under the sufficient and necessary UMD assumption on the corresponding Banach space.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2266193125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266193125</sourcerecordid><originalsourceid>FETCH-proquest_journals_22661931253</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwScA-3FRp0cRHFwdC9Heq0tMdFcWvDtdfABnP7h-2ciA61LtdsALETOPBRFAWYLVaUzcbgGi07aO0a0iWLPqbcs0Tcyoe_I27cMrZzIphDVhG6kRj4wpt536IhXYt6iY8p_XYr1-XQ7XtQzhtdInOohjNF_qQYwptzrEir93_UBNIM5Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266193125</pqid></control><display><type>article</type><title>Local characteristics and tangency of vector-valued martingales</title><source>Free E- Journals</source><creator>Yaroslavtsev, Ivan S</creator><creatorcontrib>Yaroslavtsev, Ivan S</creatorcontrib><description>This paper is devoted to tangent martingales in Banach spaces. We provide the definition of tangency through local characteristics, basic \(L^p\)- and \(\phi\)-estimates, a precise construction of a decoupled tangent martingale, new estimates for vector-valued stochastic integrals, and several other claims concerning tangent martingales and local characteristics in infinite dimensions. This work extends various real-valued and vector-valued results in this direction e.g. due to Grigelionis, Hitczenko, Jacod, Kallenberg, Kwapie\'{n}, McConnell, and Woyczy\'{n}ski. The vast majority of the assertions presented in the paper is done under the sufficient and necessary UMD assumption on the corresponding Banach space.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Banach spaces ; Martingales</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Yaroslavtsev, Ivan S</creatorcontrib><title>Local characteristics and tangency of vector-valued martingales</title><title>arXiv.org</title><description>This paper is devoted to tangent martingales in Banach spaces. We provide the definition of tangency through local characteristics, basic \(L^p\)- and \(\phi\)-estimates, a precise construction of a decoupled tangent martingale, new estimates for vector-valued stochastic integrals, and several other claims concerning tangent martingales and local characteristics in infinite dimensions. This work extends various real-valued and vector-valued results in this direction e.g. due to Grigelionis, Hitczenko, Jacod, Kallenberg, Kwapie\'{n}, McConnell, and Woyczy\'{n}ski. The vast majority of the assertions presented in the paper is done under the sufficient and necessary UMD assumption on the corresponding Banach space.</description><subject>Banach spaces</subject><subject>Martingales</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwScA-3FRp0cRHFwdC9Heq0tMdFcWvDtdfABnP7h-2ciA61LtdsALETOPBRFAWYLVaUzcbgGi07aO0a0iWLPqbcs0Tcyoe_I27cMrZzIphDVhG6kRj4wpt536IhXYt6iY8p_XYr1-XQ7XtQzhtdInOohjNF_qQYwptzrEir93_UBNIM5Lg</recordid><startdate>20200920</startdate><enddate>20200920</enddate><creator>Yaroslavtsev, Ivan S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20200920</creationdate><title>Local characteristics and tangency of vector-valued martingales</title><author>Yaroslavtsev, Ivan S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22661931253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Banach spaces</topic><topic>Martingales</topic><toplevel>online_resources</toplevel><creatorcontrib>Yaroslavtsev, Ivan S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaroslavtsev, Ivan S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Local characteristics and tangency of vector-valued martingales</atitle><jtitle>arXiv.org</jtitle><date>2020-09-20</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>This paper is devoted to tangent martingales in Banach spaces. We provide the definition of tangency through local characteristics, basic \(L^p\)- and \(\phi\)-estimates, a precise construction of a decoupled tangent martingale, new estimates for vector-valued stochastic integrals, and several other claims concerning tangent martingales and local characteristics in infinite dimensions. This work extends various real-valued and vector-valued results in this direction e.g. due to Grigelionis, Hitczenko, Jacod, Kallenberg, Kwapie\'{n}, McConnell, and Woyczy\'{n}ski. The vast majority of the assertions presented in the paper is done under the sufficient and necessary UMD assumption on the corresponding Banach space.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2266193125
source Free E- Journals
subjects Banach spaces
Martingales
title Local characteristics and tangency of vector-valued martingales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Local%20characteristics%20and%20tangency%20of%20vector-valued%20martingales&rft.jtitle=arXiv.org&rft.au=Yaroslavtsev,%20Ivan%20S&rft.date=2020-09-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2266193125%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266193125&rft_id=info:pmid/&rfr_iscdi=true