Local characteristics and tangency of vector-valued martingales
This paper is devoted to tangent martingales in Banach spaces. We provide the definition of tangency through local characteristics, basic \(L^p\)- and \(\phi\)-estimates, a precise construction of a decoupled tangent martingale, new estimates for vector-valued stochastic integrals, and several other...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is devoted to tangent martingales in Banach spaces. We provide the definition of tangency through local characteristics, basic \(L^p\)- and \(\phi\)-estimates, a precise construction of a decoupled tangent martingale, new estimates for vector-valued stochastic integrals, and several other claims concerning tangent martingales and local characteristics in infinite dimensions. This work extends various real-valued and vector-valued results in this direction e.g. due to Grigelionis, Hitczenko, Jacod, Kallenberg, Kwapie\'{n}, McConnell, and Woyczy\'{n}ski. The vast majority of the assertions presented in the paper is done under the sufficient and necessary UMD assumption on the corresponding Banach space. |
---|---|
ISSN: | 2331-8422 |