In Situ Generated Fireproof Gel Polymer Electrolyte with Li6.4Ga0.2La3Zr2O12 As Initiator and Ion‐Conductive Filler

Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) based gel polymer electrolyte is regarded as a promising candidate to settle the safety issues of liquid electrolytes. However, the currently reported gel polymer electrolytes are still not safe enough owing to high amount of flammable liqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2019-07, Vol.9 (25), p.n/a
Hauptverfasser: Xu, Dong, Su, Jianmeng, Jin, Jun, Sun, Ce, Ruan, Yadong, Chen, Chunhua, Wen, Zhaoyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) based gel polymer electrolyte is regarded as a promising candidate to settle the safety issues of liquid electrolytes. However, the currently reported gel polymer electrolytes are still not safe enough owing to high amount of flammable liquid solvents contained in them. Herein, a fireproof PVDF‐HFP based gel polymer electrolyte is designed and synthesized through an in situ crosslinking method, with Li6.4Ga0.2La3Zr2O12 as initiator and ion‐conductive filler. The obtained gel polymer electrolyte demonstrates superior fire resisting properties. The optimized gel polymer electrolyte exhibits an ionic conductivity as high as 1.84 × 10−3 S cm−1 at 20 °C with an electrochemical window up to 4.75 V at room temperature. Moreover, the obtained gel polymer electrolyte shows excellent compatibility with lithium anodes. Therefore, the lithium anode is well protected. Lithium batteries assembled with the gel polymer electrolyte possess superb safety properties in cutting and burning tests. Furthermore, the batteries also show a discharge retention rate as high as 94.08% (in comparison with the initial discharge capacity) after cycling at 0.5 C for 360 cycles with an average columbic efficiency higher than 98%. The purpose of this report is to show the great potential of applying fire‐retardant gel polymer electrolyte to achieve high safety lithium batteries. A composite gel polymer electrolyte with high ionic conductivity is in situ generated through the defluorination and crosslinking of PVDF‐HFP chains in a Lewis basic environment, which is caused by the coordination of Li6.4Ga0.2La3Zr2O12 with triethyl phosphate. Using standard tests the obtained gel polymer electrolyte can not be ignited. In addition, the assembled lithium battery demonstrates high safety performance upon cutting and burning tests.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.201900611