Quantitative Measurements of the Critical Impeller Speed for Solid‐Liquid Suspensions

A quantitative methodology for particle suspension assessment is presented. A new parameter, fmov/tot, the ratio of the mean number of moving particles to the total number of particles, is introduced to evaluate the minimum speed required to just suspend solids. This approach is tested to investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering & technology 2019-08, Vol.42 (8), p.1643-1653
Hauptverfasser: Ye, Guichuan, Nienow, Alvin W., Alberini, Federico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A quantitative methodology for particle suspension assessment is presented. A new parameter, fmov/tot, the ratio of the mean number of moving particles to the total number of particles, is introduced to evaluate the minimum speed required to just suspend solids. This approach is tested to investigate the impact of impeller clearance on the minimum impeller speed, Njs, in a vessel when using a radial flow Rushton turbine. Flow patterns and power numbers obtained experimentally and computationally support the suspension findings. Image analysis is an appropriate method for determining Njs. Lowering the impeller clearance reduces the speed required for particle suspension with a change of flow pattern from a radial discharge with two loops to a single loop scouring the vessel base. The power number also falls markedly at the two‐to‐one loop transition as does the strain rate near the base. An innovative quantitative methodology introducing a novel parameter is presented for measuring particle suspension characteristics which is more objective than the usual method relying on visual observation. A comparison of the effect of impeller clearance on minimum impeller speed with this quantitative method to predictions from previous studies and visual observation proves good agreement.
ISSN:0930-7516
1521-4125
DOI:10.1002/ceat.201800716