Curvature of C 5 ⊕ C 12 -Manifolds

The Chinea–Gonzalez class C5⊕C12 consists of the almost contact metric manifolds that are locally described as double-twisted product manifolds I×(λ1,λ2)M^, I⊂R being an open interval, M^ a Kähler manifold and λ1,λ2 smooth positive functions. In this article, we investigate the behavior of the curva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2019-01, Vol.16 (4), p.1-23
Hauptverfasser: de Candia, Salvatore, Falcitelli, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 4
container_start_page 1
container_title Mediterranean journal of mathematics
container_volume 16
creator de Candia, Salvatore
Falcitelli, Maria
description The Chinea–Gonzalez class C5⊕C12 consists of the almost contact metric manifolds that are locally described as double-twisted product manifolds I×(λ1,λ2)M^, I⊂R being an open interval, M^ a Kähler manifold and λ1,λ2 smooth positive functions. In this article, we investigate the behavior of the curvature of C5⊕C12-manifolds. Particular attention to the N(k)-nullity condition is given and some local classification theorems in dimension 2n+1≥5 are stated. This allows us to classify C5⊕C12-manifolds that are generalized Sasakian space forms. In addition, we provide explicit examples of these spaces.
doi_str_mv 10.1007/s00009-019-1382-2
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2265017761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265017761</sourcerecordid><originalsourceid>FETCH-proquest_journals_22650177613</originalsourceid><addsrcrecordid>eNpjYJA0NNAzNDAw1y82AAJLXQNDS11DYwsjXSMmBk5DMzMDXVMTUxMWONvEjIOBq7g4y8DAyNLQ2IiTQcW5tKgssaS0KFUhP03BWcFU4VHXVCBtaKSg65uYl5mWn5NSzMPAmpaYU5zKC6W5GZTdXEOcPXQLivILS1OLS-Kz8kuL8oBS8UZGZqYGhubmZobGxKkCALwqM74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265017761</pqid></control><display><type>article</type><title>Curvature of C 5 ⊕ C 12 -Manifolds</title><source>SpringerLink Journals</source><creator>de Candia, Salvatore ; Falcitelli, Maria</creator><creatorcontrib>de Candia, Salvatore ; Falcitelli, Maria</creatorcontrib><description>The Chinea–Gonzalez class C5⊕C12 consists of the almost contact metric manifolds that are locally described as double-twisted product manifolds I×(λ1,λ2)M^, I⊂R being an open interval, M^ a Kähler manifold and λ1,λ2 smooth positive functions. In this article, we investigate the behavior of the curvature of C5⊕C12-manifolds. Particular attention to the N(k)-nullity condition is given and some local classification theorems in dimension 2n+1≥5 are stated. This allows us to classify C5⊕C12-manifolds that are generalized Sasakian space forms. In addition, we provide explicit examples of these spaces.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-019-1382-2</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Curvature ; Mathematics</subject><ispartof>Mediterranean journal of mathematics, 2019-01, Vol.16 (4), p.1-23</ispartof><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>de Candia, Salvatore</creatorcontrib><creatorcontrib>Falcitelli, Maria</creatorcontrib><title>Curvature of C 5 ⊕ C 12 -Manifolds</title><title>Mediterranean journal of mathematics</title><description>The Chinea–Gonzalez class C5⊕C12 consists of the almost contact metric manifolds that are locally described as double-twisted product manifolds I×(λ1,λ2)M^, I⊂R being an open interval, M^ a Kähler manifold and λ1,λ2 smooth positive functions. In this article, we investigate the behavior of the curvature of C5⊕C12-manifolds. Particular attention to the N(k)-nullity condition is given and some local classification theorems in dimension 2n+1≥5 are stated. This allows us to classify C5⊕C12-manifolds that are generalized Sasakian space forms. In addition, we provide explicit examples of these spaces.</description><subject>Curvature</subject><subject>Mathematics</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYJA0NNAzNDAw1y82AAJLXQNDS11DYwsjXSMmBk5DMzMDXVMTUxMWONvEjIOBq7g4y8DAyNLQ2IiTQcW5tKgssaS0KFUhP03BWcFU4VHXVCBtaKSg65uYl5mWn5NSzMPAmpaYU5zKC6W5GZTdXEOcPXQLivILS1OLS-Kz8kuL8oBS8UZGZqYGhubmZobGxKkCALwqM74</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>de Candia, Salvatore</creator><creator>Falcitelli, Maria</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20190101</creationdate><title>Curvature of C 5 ⊕ C 12 -Manifolds</title><author>de Candia, Salvatore ; Falcitelli, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22650177613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Curvature</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Candia, Salvatore</creatorcontrib><creatorcontrib>Falcitelli, Maria</creatorcontrib><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Candia, Salvatore</au><au>Falcitelli, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvature of C 5 ⊕ C 12 -Manifolds</atitle><jtitle>Mediterranean journal of mathematics</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>16</volume><issue>4</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>The Chinea–Gonzalez class C5⊕C12 consists of the almost contact metric manifolds that are locally described as double-twisted product manifolds I×(λ1,λ2)M^, I⊂R being an open interval, M^ a Kähler manifold and λ1,λ2 smooth positive functions. In this article, we investigate the behavior of the curvature of C5⊕C12-manifolds. Particular attention to the N(k)-nullity condition is given and some local classification theorems in dimension 2n+1≥5 are stated. This allows us to classify C5⊕C12-manifolds that are generalized Sasakian space forms. In addition, we provide explicit examples of these spaces.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00009-019-1382-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 1660-5446
ispartof Mediterranean journal of mathematics, 2019-01, Vol.16 (4), p.1-23
issn 1660-5446
1660-5454
language eng
recordid cdi_proquest_journals_2265017761
source SpringerLink Journals
subjects Curvature
Mathematics
title Curvature of C 5 ⊕ C 12 -Manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvature%20of%20C%205%20%E2%8A%95%20C%2012%20-Manifolds&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=de%20Candia,%20Salvatore&rft.date=2019-01-01&rft.volume=16&rft.issue=4&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-019-1382-2&rft_dat=%3Cproquest%3E2265017761%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265017761&rft_id=info:pmid/&rfr_iscdi=true