Curvature of C 5 ⊕ C 12 -Manifolds
The Chinea–Gonzalez class C5⊕C12 consists of the almost contact metric manifolds that are locally described as double-twisted product manifolds I×(λ1,λ2)M^, I⊂R being an open interval, M^ a Kähler manifold and λ1,λ2 smooth positive functions. In this article, we investigate the behavior of the curva...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2019-01, Vol.16 (4), p.1-23 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Chinea–Gonzalez class C5⊕C12 consists of the almost contact metric manifolds that are locally described as double-twisted product manifolds I×(λ1,λ2)M^, I⊂R being an open interval, M^ a Kähler manifold and λ1,λ2 smooth positive functions. In this article, we investigate the behavior of the curvature of C5⊕C12-manifolds. Particular attention to the N(k)-nullity condition is given and some local classification theorems in dimension 2n+1≥5 are stated. This allows us to classify C5⊕C12-manifolds that are generalized Sasakian space forms. In addition, we provide explicit examples of these spaces. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-019-1382-2 |