Bicomplex Analogs of Segal–Bargmann and Fractional Fourier Transforms
We consider and discuss some basic properties of the bicomplex analog of the classical Bargmann space. The explicit expression of the integral operator connecting the complex and bicomplex Bargmann spaces is also given. The corresponding bicomplex Segal–Bargmann transform is introduced and studied a...
Gespeichert in:
Veröffentlicht in: | Advances in applied Clifford algebras 2019-09, Vol.29 (4), p.1-20, Article 74 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider and discuss some basic properties of the bicomplex analog of the classical Bargmann space. The explicit expression of the integral operator connecting the complex and bicomplex Bargmann spaces is also given. The corresponding bicomplex Segal–Bargmann transform is introduced and studied as well. Its explicit expression as well as the one of its inverse are then used to introduce a class of two-parameter bicomplex Fourier transforms (bicomplex fractional Fourier transform). This approach is convenient in exploring some useful properties of this bicomplex fractional Fourier transform. |
---|---|
ISSN: | 0188-7009 1661-4909 |
DOI: | 10.1007/s00006-019-0993-9 |