Preparation and Rheological and Mechanical Properties of Poly(butylene succinate)/Talc Composites for Material Extrusion Additive Manufacturing
In this paper, poly(butylene succinate) (PBS) with a low melting point and a similar performance to polyethylene is employed as a printing material; talc is introduced into the matrix to enhance the melt strength of pure PBS during printing. The PBS/talc composite 3D printing filament is prepared by...
Gespeichert in:
Veröffentlicht in: | Macromolecular materials and engineering 2019-07, Vol.304 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Macromolecular materials and engineering |
container_volume | 304 |
creator | Zhou, Yunhong Xia, Xinshu Liu, Xinping Huang, Baoquan Xiao, Liren Qian, Qingrong Chen, Qinghua |
description | In this paper, poly(butylene succinate) (PBS) with a low melting point and a similar performance to polyethylene is employed as a printing material; talc is introduced into the matrix to enhance the melt strength of pure PBS during printing. The PBS/talc composite 3D printing filament is prepared by melt extrusion, and the thermal, mechanical, morphological, and rheological properties of the composites are investigated. The results show that the addition of talc to PBS leads to an increase in crystallization temperature. In addition, the tensile and flexural strengths of the injection‐molded specimens increase when the talc concentration increases. However, the mechanical properties of the printed specimens exhibit an opposite variation trend due to their distinct forming process. The printing temperature is 135 °C, which is far lower than those of commercial grade polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) printing filaments. Scanning electron microscopy (SEM) images show that increasing the talc concentration creates better printed formability and well‐organized fracture surface structures. By comparing printed fishbones, the results suggest that the presence of talc leads to a good printing performance with the composite. Furthermore, the rheological results reveal that η*, G′, and G″ are enhanced by the addition of talc.
PBS, which is an eco‐friendly polyester with broad prospects, is successfully applied to 3D printing applications by blending with talc. The experimental results indicate that the composites are enhanced by talc addition and that the composites exhibit good formability at low printing temperatures. These eco‐friendly filaments may further broaden the range of 3D printing materials. |
doi_str_mv | 10.1002/mame.201900021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2264460969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2264460969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4461-a70c0fbda57866152b37e1b5cf8e2aee5178d8fde20ad1eab13bd76d2f4505813</originalsourceid><addsrcrecordid>eNqFUMtOwzAQjBBIlMKVcyQucEhrO-9jVZWH1IgKlXPk2OvWVRIH2wHyFfwybovgyGl3NDM72vG8a4wmGCEybWgDE4JwjhzCJ94IR2EeEBRHp4c9C9IoJ-fehTE7hHCa5eHI-1pp6KimVqrWpy33X7agarWRjNYHXADb0vYAV1p1oK0E4yvhr1Q93Fa9HWpowTc9Y7KlFu6ma1ozf66aThlpnVYo7ReO0dLdWHxa3Zt92IxzaeU7OK7tBWW217LdXHpngtYGrn7m2Hu9X6znj8Hy-eFpPlsGLIoSHNAUMSQqTuM0SxIckypMAVcxExkQChC793gmOBBEOQZa4bDiacKJiGIUZzgcezfHu51Wbz0YW-5Ur1sXWRKSuAyUJ7lTTY4qppUxGkTZadlQPZQYlfvSy33p5W_pzpAfDR-yhuEfdVnMisWf9xvX8Ilv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2264460969</pqid></control><display><type>article</type><title>Preparation and Rheological and Mechanical Properties of Poly(butylene succinate)/Talc Composites for Material Extrusion Additive Manufacturing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Yunhong ; Xia, Xinshu ; Liu, Xinping ; Huang, Baoquan ; Xiao, Liren ; Qian, Qingrong ; Chen, Qinghua</creator><creatorcontrib>Zhou, Yunhong ; Xia, Xinshu ; Liu, Xinping ; Huang, Baoquan ; Xiao, Liren ; Qian, Qingrong ; Chen, Qinghua</creatorcontrib><description>In this paper, poly(butylene succinate) (PBS) with a low melting point and a similar performance to polyethylene is employed as a printing material; talc is introduced into the matrix to enhance the melt strength of pure PBS during printing. The PBS/talc composite 3D printing filament is prepared by melt extrusion, and the thermal, mechanical, morphological, and rheological properties of the composites are investigated. The results show that the addition of talc to PBS leads to an increase in crystallization temperature. In addition, the tensile and flexural strengths of the injection‐molded specimens increase when the talc concentration increases. However, the mechanical properties of the printed specimens exhibit an opposite variation trend due to their distinct forming process. The printing temperature is 135 °C, which is far lower than those of commercial grade polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) printing filaments. Scanning electron microscopy (SEM) images show that increasing the talc concentration creates better printed formability and well‐organized fracture surface structures. By comparing printed fishbones, the results suggest that the presence of talc leads to a good printing performance with the composite. Furthermore, the rheological results reveal that η*, G′, and G″ are enhanced by the addition of talc.
PBS, which is an eco‐friendly polyester with broad prospects, is successfully applied to 3D printing applications by blending with talc. The experimental results indicate that the composites are enhanced by talc addition and that the composites exhibit good formability at low printing temperatures. These eco‐friendly filaments may further broaden the range of 3D printing materials.</description><identifier>ISSN: 1438-7492</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.201900021</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>ABS resins ; Acrylonitrile butadiene styrene ; Additive manufacturing ; Crystallization ; Extrusion ; Filaments ; formability ; Fracture surfaces ; fused deposition modelling ; low‐temperature printing ; Mechanical properties ; Melting points ; poly(butylene succinate) ; Polyethylenes ; Polylactic acid ; Rheological properties ; Rheology ; Scanning electron microscopy ; Talc ; Three dimensional composites ; Three dimensional printing</subject><ispartof>Macromolecular materials and engineering, 2019-07, Vol.304 (7), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4461-a70c0fbda57866152b37e1b5cf8e2aee5178d8fde20ad1eab13bd76d2f4505813</citedby><cites>FETCH-LOGICAL-c4461-a70c0fbda57866152b37e1b5cf8e2aee5178d8fde20ad1eab13bd76d2f4505813</cites><orcidid>0000-0001-9659-4939 ; 0000-0003-1170-7872 ; 0000-0001-5646-4881 ; 0000-0001-7131-1787 ; 0000-0001-7103-4775 ; 0000-0003-4546-4637 ; 0000-0001-6969-1688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.201900021$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.201900021$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhou, Yunhong</creatorcontrib><creatorcontrib>Xia, Xinshu</creatorcontrib><creatorcontrib>Liu, Xinping</creatorcontrib><creatorcontrib>Huang, Baoquan</creatorcontrib><creatorcontrib>Xiao, Liren</creatorcontrib><creatorcontrib>Qian, Qingrong</creatorcontrib><creatorcontrib>Chen, Qinghua</creatorcontrib><title>Preparation and Rheological and Mechanical Properties of Poly(butylene succinate)/Talc Composites for Material Extrusion Additive Manufacturing</title><title>Macromolecular materials and engineering</title><description>In this paper, poly(butylene succinate) (PBS) with a low melting point and a similar performance to polyethylene is employed as a printing material; talc is introduced into the matrix to enhance the melt strength of pure PBS during printing. The PBS/talc composite 3D printing filament is prepared by melt extrusion, and the thermal, mechanical, morphological, and rheological properties of the composites are investigated. The results show that the addition of talc to PBS leads to an increase in crystallization temperature. In addition, the tensile and flexural strengths of the injection‐molded specimens increase when the talc concentration increases. However, the mechanical properties of the printed specimens exhibit an opposite variation trend due to their distinct forming process. The printing temperature is 135 °C, which is far lower than those of commercial grade polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) printing filaments. Scanning electron microscopy (SEM) images show that increasing the talc concentration creates better printed formability and well‐organized fracture surface structures. By comparing printed fishbones, the results suggest that the presence of talc leads to a good printing performance with the composite. Furthermore, the rheological results reveal that η*, G′, and G″ are enhanced by the addition of talc.
PBS, which is an eco‐friendly polyester with broad prospects, is successfully applied to 3D printing applications by blending with talc. The experimental results indicate that the composites are enhanced by talc addition and that the composites exhibit good formability at low printing temperatures. These eco‐friendly filaments may further broaden the range of 3D printing materials.</description><subject>ABS resins</subject><subject>Acrylonitrile butadiene styrene</subject><subject>Additive manufacturing</subject><subject>Crystallization</subject><subject>Extrusion</subject><subject>Filaments</subject><subject>formability</subject><subject>Fracture surfaces</subject><subject>fused deposition modelling</subject><subject>low‐temperature printing</subject><subject>Mechanical properties</subject><subject>Melting points</subject><subject>poly(butylene succinate)</subject><subject>Polyethylenes</subject><subject>Polylactic acid</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Scanning electron microscopy</subject><subject>Talc</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><issn>1438-7492</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQjBBIlMKVcyQucEhrO-9jVZWH1IgKlXPk2OvWVRIH2wHyFfwybovgyGl3NDM72vG8a4wmGCEybWgDE4JwjhzCJ94IR2EeEBRHp4c9C9IoJ-fehTE7hHCa5eHI-1pp6KimVqrWpy33X7agarWRjNYHXADb0vYAV1p1oK0E4yvhr1Q93Fa9HWpowTc9Y7KlFu6ma1ozf66aThlpnVYo7ReO0dLdWHxa3Zt92IxzaeU7OK7tBWW217LdXHpngtYGrn7m2Hu9X6znj8Hy-eFpPlsGLIoSHNAUMSQqTuM0SxIckypMAVcxExkQChC793gmOBBEOQZa4bDiacKJiGIUZzgcezfHu51Wbz0YW-5Ur1sXWRKSuAyUJ7lTTY4qppUxGkTZadlQPZQYlfvSy33p5W_pzpAfDR-yhuEfdVnMisWf9xvX8Ilv</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Zhou, Yunhong</creator><creator>Xia, Xinshu</creator><creator>Liu, Xinping</creator><creator>Huang, Baoquan</creator><creator>Xiao, Liren</creator><creator>Qian, Qingrong</creator><creator>Chen, Qinghua</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9659-4939</orcidid><orcidid>https://orcid.org/0000-0003-1170-7872</orcidid><orcidid>https://orcid.org/0000-0001-5646-4881</orcidid><orcidid>https://orcid.org/0000-0001-7131-1787</orcidid><orcidid>https://orcid.org/0000-0001-7103-4775</orcidid><orcidid>https://orcid.org/0000-0003-4546-4637</orcidid><orcidid>https://orcid.org/0000-0001-6969-1688</orcidid></search><sort><creationdate>201907</creationdate><title>Preparation and Rheological and Mechanical Properties of Poly(butylene succinate)/Talc Composites for Material Extrusion Additive Manufacturing</title><author>Zhou, Yunhong ; Xia, Xinshu ; Liu, Xinping ; Huang, Baoquan ; Xiao, Liren ; Qian, Qingrong ; Chen, Qinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4461-a70c0fbda57866152b37e1b5cf8e2aee5178d8fde20ad1eab13bd76d2f4505813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ABS resins</topic><topic>Acrylonitrile butadiene styrene</topic><topic>Additive manufacturing</topic><topic>Crystallization</topic><topic>Extrusion</topic><topic>Filaments</topic><topic>formability</topic><topic>Fracture surfaces</topic><topic>fused deposition modelling</topic><topic>low‐temperature printing</topic><topic>Mechanical properties</topic><topic>Melting points</topic><topic>poly(butylene succinate)</topic><topic>Polyethylenes</topic><topic>Polylactic acid</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Scanning electron microscopy</topic><topic>Talc</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yunhong</creatorcontrib><creatorcontrib>Xia, Xinshu</creatorcontrib><creatorcontrib>Liu, Xinping</creatorcontrib><creatorcontrib>Huang, Baoquan</creatorcontrib><creatorcontrib>Xiao, Liren</creatorcontrib><creatorcontrib>Qian, Qingrong</creatorcontrib><creatorcontrib>Chen, Qinghua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yunhong</au><au>Xia, Xinshu</au><au>Liu, Xinping</au><au>Huang, Baoquan</au><au>Xiao, Liren</au><au>Qian, Qingrong</au><au>Chen, Qinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and Rheological and Mechanical Properties of Poly(butylene succinate)/Talc Composites for Material Extrusion Additive Manufacturing</atitle><jtitle>Macromolecular materials and engineering</jtitle><date>2019-07</date><risdate>2019</risdate><volume>304</volume><issue>7</issue><epage>n/a</epage><issn>1438-7492</issn><eissn>1439-2054</eissn><abstract>In this paper, poly(butylene succinate) (PBS) with a low melting point and a similar performance to polyethylene is employed as a printing material; talc is introduced into the matrix to enhance the melt strength of pure PBS during printing. The PBS/talc composite 3D printing filament is prepared by melt extrusion, and the thermal, mechanical, morphological, and rheological properties of the composites are investigated. The results show that the addition of talc to PBS leads to an increase in crystallization temperature. In addition, the tensile and flexural strengths of the injection‐molded specimens increase when the talc concentration increases. However, the mechanical properties of the printed specimens exhibit an opposite variation trend due to their distinct forming process. The printing temperature is 135 °C, which is far lower than those of commercial grade polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) printing filaments. Scanning electron microscopy (SEM) images show that increasing the talc concentration creates better printed formability and well‐organized fracture surface structures. By comparing printed fishbones, the results suggest that the presence of talc leads to a good printing performance with the composite. Furthermore, the rheological results reveal that η*, G′, and G″ are enhanced by the addition of talc.
PBS, which is an eco‐friendly polyester with broad prospects, is successfully applied to 3D printing applications by blending with talc. The experimental results indicate that the composites are enhanced by talc addition and that the composites exhibit good formability at low printing temperatures. These eco‐friendly filaments may further broaden the range of 3D printing materials.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/mame.201900021</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9659-4939</orcidid><orcidid>https://orcid.org/0000-0003-1170-7872</orcidid><orcidid>https://orcid.org/0000-0001-5646-4881</orcidid><orcidid>https://orcid.org/0000-0001-7131-1787</orcidid><orcidid>https://orcid.org/0000-0001-7103-4775</orcidid><orcidid>https://orcid.org/0000-0003-4546-4637</orcidid><orcidid>https://orcid.org/0000-0001-6969-1688</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-7492 |
ispartof | Macromolecular materials and engineering, 2019-07, Vol.304 (7), p.n/a |
issn | 1438-7492 1439-2054 |
language | eng |
recordid | cdi_proquest_journals_2264460969 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | ABS resins Acrylonitrile butadiene styrene Additive manufacturing Crystallization Extrusion Filaments formability Fracture surfaces fused deposition modelling low‐temperature printing Mechanical properties Melting points poly(butylene succinate) Polyethylenes Polylactic acid Rheological properties Rheology Scanning electron microscopy Talc Three dimensional composites Three dimensional printing |
title | Preparation and Rheological and Mechanical Properties of Poly(butylene succinate)/Talc Composites for Material Extrusion Additive Manufacturing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20Rheological%20and%20Mechanical%20Properties%20of%20Poly(butylene%20succinate)/Talc%20Composites%20for%20Material%20Extrusion%20Additive%20Manufacturing&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Zhou,%20Yunhong&rft.date=2019-07&rft.volume=304&rft.issue=7&rft.epage=n/a&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.201900021&rft_dat=%3Cproquest_cross%3E2264460969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264460969&rft_id=info:pmid/&rfr_iscdi=true |