Preparation and Rheological and Mechanical Properties of Poly(butylene succinate)/Talc Composites for Material Extrusion Additive Manufacturing

In this paper, poly(butylene succinate) (PBS) with a low melting point and a similar performance to polyethylene is employed as a printing material; talc is introduced into the matrix to enhance the melt strength of pure PBS during printing. The PBS/talc composite 3D printing filament is prepared by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular materials and engineering 2019-07, Vol.304 (7), p.n/a
Hauptverfasser: Zhou, Yunhong, Xia, Xinshu, Liu, Xinping, Huang, Baoquan, Xiao, Liren, Qian, Qingrong, Chen, Qinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, poly(butylene succinate) (PBS) with a low melting point and a similar performance to polyethylene is employed as a printing material; talc is introduced into the matrix to enhance the melt strength of pure PBS during printing. The PBS/talc composite 3D printing filament is prepared by melt extrusion, and the thermal, mechanical, morphological, and rheological properties of the composites are investigated. The results show that the addition of talc to PBS leads to an increase in crystallization temperature. In addition, the tensile and flexural strengths of the injection‐molded specimens increase when the talc concentration increases. However, the mechanical properties of the printed specimens exhibit an opposite variation trend due to their distinct forming process. The printing temperature is 135 °C, which is far lower than those of commercial grade polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) printing filaments. Scanning electron microscopy (SEM) images show that increasing the talc concentration creates better printed formability and well‐organized fracture surface structures. By comparing printed fishbones, the results suggest that the presence of talc leads to a good printing performance with the composite. Furthermore, the rheological results reveal that η*, G′, and G″ are enhanced by the addition of talc. PBS, which is an eco‐friendly polyester with broad prospects, is successfully applied to 3D printing applications by blending with talc. The experimental results indicate that the composites are enhanced by talc addition and that the composites exhibit good formability at low printing temperatures. These eco‐friendly filaments may further broaden the range of 3D printing materials.
ISSN:1438-7492
1439-2054
DOI:10.1002/mame.201900021