Heavy‐Metal‐Free, Low‐Damping, and Non‐Interface Perpendicular Fe16N2 Thin Film and Magnetoresistance Device

Realization of sub‐10 nm spin‐based logic and memory devices relies on the development of magnetic materials with perpendicular magnetic anisotropy that can provide low switching current and large thermal stability simultaneously. In this work, the authors report on one promising candidate, Fe16N2,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. PSS-RRL. Rapid research letters 2019-07, Vol.13 (7), p.n/a
Hauptverfasser: Li, Xuan, Yang, Meiyin, Jamali, Mahdi, Shi, Fengyuan, Kang, Shishou, Jiang, Yanfeng, Zhang, Xiaowei, Li, Hongshi, Okatov, Sergey, Faleev, Sergey, Kalitsov, Alan, Yu, Guanghua, Voyles, Paul M., Mryasov, Oleg N., Wang, Jian‐Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Physica status solidi. PSS-RRL. Rapid research letters
container_volume 13
creator Li, Xuan
Yang, Meiyin
Jamali, Mahdi
Shi, Fengyuan
Kang, Shishou
Jiang, Yanfeng
Zhang, Xiaowei
Li, Hongshi
Okatov, Sergey
Faleev, Sergey
Kalitsov, Alan
Yu, Guanghua
Voyles, Paul M.
Mryasov, Oleg N.
Wang, Jian‐Ping
description Realization of sub‐10 nm spin‐based logic and memory devices relies on the development of magnetic materials with perpendicular magnetic anisotropy that can provide low switching current and large thermal stability simultaneously. In this work, the authors report on one promising candidate, Fe16N2, a heavy‐metal‐free, non‐interface perpendicular magnetic material and demonstrate a perpendicularly magnetized current‐perpendicular‐to‐plane (CPP) giant magnetoresistance (GMR) device based on Fe16N2. The crystalline‐based perpendicular anisotropy of Fe16N2 in the CPP GMR device is measured to be about 1.9 × 106 J m−3 (1.9 × 107 erg cm−3), which is sufficient to maintain the thermal stability of sub‐10 nm devices. A first principle calculation is performed to support this large magnitude of the perpendicular anisotropy. Moreover, the Gilbert damping constant of the Fe16N2 thin film (α ≈0.01) measured by ferromagnetic resonance (FMR) is lower than for most existing materials with crystalline perpendicular magnetic anisotropy. The non‐interface perpendicular anisotropy and low damping properties of Fe16N2 may offer a pathway for future spintronics logic and memory devices. Realization of sub‐10 nm spin‐based logic and memory devices relies on materials with perpendicular magnetic anisotropy (PMA) that can provide large thermal stability and low switching current. This article demonstrates that Fe16N2, a heavy‐metal‐free, low‐damping, and non‐interface perpendicular material, may satisfy the above requirements for sub‐10 nm spintronic devices, due to its large PMA and small damping constant.
doi_str_mv 10.1002/pssr.201900089
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2264460958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2264460958</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2339-e2bcde8a2aef1e254d397bc561cf9307bea9c264470bc25b067861b3dd96be2c3</originalsourceid><addsrcrecordid>eNo9UE1PwkAU3BhNRPTquYlXivvRbrtHA1ZIAIngebPdvuKSsq3bAuHmT_A3-kssYjjNvJeZNy-D0D3BfYIxfazq2vUpJgJjHIsL1CExpz6nEb488zC4Rjd1vcY4FFHAOqgZgdodfr6-p9CoosXEAfS8Sblv-VBtKmNXPU_ZzJuVtl2NbQMuVxq8ObgKbGb0tlDOS4DwGfWWH8Z6iSk2f5apWlloSge1qRtlW9MQdkbDLbrKVVHD3T920XvyvByM_Mnry3jwNPErypjwgaY6g1hRBTmB9veMiSjVISc6FwxHKSihKQ-CCKeahinmUcxJyrJM8BSoZl30cLpbufJzC3Uj1-XW2TZS0qOPYxHGrUqcVHtTwEFWzmyUO0iC5bFWeaxVnmuV88Xi7TyxX6mRcrc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2264460958</pqid></control><display><type>article</type><title>Heavy‐Metal‐Free, Low‐Damping, and Non‐Interface Perpendicular Fe16N2 Thin Film and Magnetoresistance Device</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Xuan ; Yang, Meiyin ; Jamali, Mahdi ; Shi, Fengyuan ; Kang, Shishou ; Jiang, Yanfeng ; Zhang, Xiaowei ; Li, Hongshi ; Okatov, Sergey ; Faleev, Sergey ; Kalitsov, Alan ; Yu, Guanghua ; Voyles, Paul M. ; Mryasov, Oleg N. ; Wang, Jian‐Ping</creator><creatorcontrib>Li, Xuan ; Yang, Meiyin ; Jamali, Mahdi ; Shi, Fengyuan ; Kang, Shishou ; Jiang, Yanfeng ; Zhang, Xiaowei ; Li, Hongshi ; Okatov, Sergey ; Faleev, Sergey ; Kalitsov, Alan ; Yu, Guanghua ; Voyles, Paul M. ; Mryasov, Oleg N. ; Wang, Jian‐Ping</creatorcontrib><description>Realization of sub‐10 nm spin‐based logic and memory devices relies on the development of magnetic materials with perpendicular magnetic anisotropy that can provide low switching current and large thermal stability simultaneously. In this work, the authors report on one promising candidate, Fe16N2, a heavy‐metal‐free, non‐interface perpendicular magnetic material and demonstrate a perpendicularly magnetized current‐perpendicular‐to‐plane (CPP) giant magnetoresistance (GMR) device based on Fe16N2. The crystalline‐based perpendicular anisotropy of Fe16N2 in the CPP GMR device is measured to be about 1.9 × 106 J m−3 (1.9 × 107 erg cm−3), which is sufficient to maintain the thermal stability of sub‐10 nm devices. A first principle calculation is performed to support this large magnitude of the perpendicular anisotropy. Moreover, the Gilbert damping constant of the Fe16N2 thin film (α ≈0.01) measured by ferromagnetic resonance (FMR) is lower than for most existing materials with crystalline perpendicular magnetic anisotropy. The non‐interface perpendicular anisotropy and low damping properties of Fe16N2 may offer a pathway for future spintronics logic and memory devices. Realization of sub‐10 nm spin‐based logic and memory devices relies on materials with perpendicular magnetic anisotropy (PMA) that can provide large thermal stability and low switching current. This article demonstrates that Fe16N2, a heavy‐metal‐free, low‐damping, and non‐interface perpendicular material, may satisfy the above requirements for sub‐10 nm spintronic devices, due to its large PMA and small damping constant.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.201900089</identifier><language>eng</language><publisher>Berlin: WILEY?VCH Verlag Berlin GmbH</publisher><subject>Anisotropy ; Crystal structure ; Crystallinity ; Damping ; damping constant ; Fe16N2 ; Ferromagnetic materials ; Ferromagnetic resonance ; First principles ; Giant magnetoresistance ; Iron nitride ; Magnetic anisotropy ; Magnetic materials ; Magnetic properties ; Magnetoresistance ; Magnetoresistivity ; Memory devices ; perpendicular magnetic anisotropy ; spintronic devices ; Spintronics ; Thermal stability ; Thin films</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2019-07, Vol.13 (7), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9884-302X ; 0000-0003-2815-6624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssr.201900089$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssr.201900089$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Xuan</creatorcontrib><creatorcontrib>Yang, Meiyin</creatorcontrib><creatorcontrib>Jamali, Mahdi</creatorcontrib><creatorcontrib>Shi, Fengyuan</creatorcontrib><creatorcontrib>Kang, Shishou</creatorcontrib><creatorcontrib>Jiang, Yanfeng</creatorcontrib><creatorcontrib>Zhang, Xiaowei</creatorcontrib><creatorcontrib>Li, Hongshi</creatorcontrib><creatorcontrib>Okatov, Sergey</creatorcontrib><creatorcontrib>Faleev, Sergey</creatorcontrib><creatorcontrib>Kalitsov, Alan</creatorcontrib><creatorcontrib>Yu, Guanghua</creatorcontrib><creatorcontrib>Voyles, Paul M.</creatorcontrib><creatorcontrib>Mryasov, Oleg N.</creatorcontrib><creatorcontrib>Wang, Jian‐Ping</creatorcontrib><title>Heavy‐Metal‐Free, Low‐Damping, and Non‐Interface Perpendicular Fe16N2 Thin Film and Magnetoresistance Device</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>Realization of sub‐10 nm spin‐based logic and memory devices relies on the development of magnetic materials with perpendicular magnetic anisotropy that can provide low switching current and large thermal stability simultaneously. In this work, the authors report on one promising candidate, Fe16N2, a heavy‐metal‐free, non‐interface perpendicular magnetic material and demonstrate a perpendicularly magnetized current‐perpendicular‐to‐plane (CPP) giant magnetoresistance (GMR) device based on Fe16N2. The crystalline‐based perpendicular anisotropy of Fe16N2 in the CPP GMR device is measured to be about 1.9 × 106 J m−3 (1.9 × 107 erg cm−3), which is sufficient to maintain the thermal stability of sub‐10 nm devices. A first principle calculation is performed to support this large magnitude of the perpendicular anisotropy. Moreover, the Gilbert damping constant of the Fe16N2 thin film (α ≈0.01) measured by ferromagnetic resonance (FMR) is lower than for most existing materials with crystalline perpendicular magnetic anisotropy. The non‐interface perpendicular anisotropy and low damping properties of Fe16N2 may offer a pathway for future spintronics logic and memory devices. Realization of sub‐10 nm spin‐based logic and memory devices relies on materials with perpendicular magnetic anisotropy (PMA) that can provide large thermal stability and low switching current. This article demonstrates that Fe16N2, a heavy‐metal‐free, low‐damping, and non‐interface perpendicular material, may satisfy the above requirements for sub‐10 nm spintronic devices, due to its large PMA and small damping constant.</description><subject>Anisotropy</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Damping</subject><subject>damping constant</subject><subject>Fe16N2</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetic resonance</subject><subject>First principles</subject><subject>Giant magnetoresistance</subject><subject>Iron nitride</subject><subject>Magnetic anisotropy</subject><subject>Magnetic materials</subject><subject>Magnetic properties</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Memory devices</subject><subject>perpendicular magnetic anisotropy</subject><subject>spintronic devices</subject><subject>Spintronics</subject><subject>Thermal stability</subject><subject>Thin films</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UE1PwkAU3BhNRPTquYlXivvRbrtHA1ZIAIngebPdvuKSsq3bAuHmT_A3-kssYjjNvJeZNy-D0D3BfYIxfazq2vUpJgJjHIsL1CExpz6nEb488zC4Rjd1vcY4FFHAOqgZgdodfr6-p9CoosXEAfS8Sblv-VBtKmNXPU_ZzJuVtl2NbQMuVxq8ObgKbGb0tlDOS4DwGfWWH8Z6iSk2f5apWlloSge1qRtlW9MQdkbDLbrKVVHD3T920XvyvByM_Mnry3jwNPErypjwgaY6g1hRBTmB9veMiSjVISc6FwxHKSihKQ-CCKeahinmUcxJyrJM8BSoZl30cLpbufJzC3Uj1-XW2TZS0qOPYxHGrUqcVHtTwEFWzmyUO0iC5bFWeaxVnmuV88Xi7TyxX6mRcrc</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Li, Xuan</creator><creator>Yang, Meiyin</creator><creator>Jamali, Mahdi</creator><creator>Shi, Fengyuan</creator><creator>Kang, Shishou</creator><creator>Jiang, Yanfeng</creator><creator>Zhang, Xiaowei</creator><creator>Li, Hongshi</creator><creator>Okatov, Sergey</creator><creator>Faleev, Sergey</creator><creator>Kalitsov, Alan</creator><creator>Yu, Guanghua</creator><creator>Voyles, Paul M.</creator><creator>Mryasov, Oleg N.</creator><creator>Wang, Jian‐Ping</creator><general>WILEY?VCH Verlag Berlin GmbH</general><general>Wiley Subscription Services, Inc</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9884-302X</orcidid><orcidid>https://orcid.org/0000-0003-2815-6624</orcidid></search><sort><creationdate>201907</creationdate><title>Heavy‐Metal‐Free, Low‐Damping, and Non‐Interface Perpendicular Fe16N2 Thin Film and Magnetoresistance Device</title><author>Li, Xuan ; Yang, Meiyin ; Jamali, Mahdi ; Shi, Fengyuan ; Kang, Shishou ; Jiang, Yanfeng ; Zhang, Xiaowei ; Li, Hongshi ; Okatov, Sergey ; Faleev, Sergey ; Kalitsov, Alan ; Yu, Guanghua ; Voyles, Paul M. ; Mryasov, Oleg N. ; Wang, Jian‐Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2339-e2bcde8a2aef1e254d397bc561cf9307bea9c264470bc25b067861b3dd96be2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Damping</topic><topic>damping constant</topic><topic>Fe16N2</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetic resonance</topic><topic>First principles</topic><topic>Giant magnetoresistance</topic><topic>Iron nitride</topic><topic>Magnetic anisotropy</topic><topic>Magnetic materials</topic><topic>Magnetic properties</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Memory devices</topic><topic>perpendicular magnetic anisotropy</topic><topic>spintronic devices</topic><topic>Spintronics</topic><topic>Thermal stability</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuan</creatorcontrib><creatorcontrib>Yang, Meiyin</creatorcontrib><creatorcontrib>Jamali, Mahdi</creatorcontrib><creatorcontrib>Shi, Fengyuan</creatorcontrib><creatorcontrib>Kang, Shishou</creatorcontrib><creatorcontrib>Jiang, Yanfeng</creatorcontrib><creatorcontrib>Zhang, Xiaowei</creatorcontrib><creatorcontrib>Li, Hongshi</creatorcontrib><creatorcontrib>Okatov, Sergey</creatorcontrib><creatorcontrib>Faleev, Sergey</creatorcontrib><creatorcontrib>Kalitsov, Alan</creatorcontrib><creatorcontrib>Yu, Guanghua</creatorcontrib><creatorcontrib>Voyles, Paul M.</creatorcontrib><creatorcontrib>Mryasov, Oleg N.</creatorcontrib><creatorcontrib>Wang, Jian‐Ping</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xuan</au><au>Yang, Meiyin</au><au>Jamali, Mahdi</au><au>Shi, Fengyuan</au><au>Kang, Shishou</au><au>Jiang, Yanfeng</au><au>Zhang, Xiaowei</au><au>Li, Hongshi</au><au>Okatov, Sergey</au><au>Faleev, Sergey</au><au>Kalitsov, Alan</au><au>Yu, Guanghua</au><au>Voyles, Paul M.</au><au>Mryasov, Oleg N.</au><au>Wang, Jian‐Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heavy‐Metal‐Free, Low‐Damping, and Non‐Interface Perpendicular Fe16N2 Thin Film and Magnetoresistance Device</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2019-07</date><risdate>2019</risdate><volume>13</volume><issue>7</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>Realization of sub‐10 nm spin‐based logic and memory devices relies on the development of magnetic materials with perpendicular magnetic anisotropy that can provide low switching current and large thermal stability simultaneously. In this work, the authors report on one promising candidate, Fe16N2, a heavy‐metal‐free, non‐interface perpendicular magnetic material and demonstrate a perpendicularly magnetized current‐perpendicular‐to‐plane (CPP) giant magnetoresistance (GMR) device based on Fe16N2. The crystalline‐based perpendicular anisotropy of Fe16N2 in the CPP GMR device is measured to be about 1.9 × 106 J m−3 (1.9 × 107 erg cm−3), which is sufficient to maintain the thermal stability of sub‐10 nm devices. A first principle calculation is performed to support this large magnitude of the perpendicular anisotropy. Moreover, the Gilbert damping constant of the Fe16N2 thin film (α ≈0.01) measured by ferromagnetic resonance (FMR) is lower than for most existing materials with crystalline perpendicular magnetic anisotropy. The non‐interface perpendicular anisotropy and low damping properties of Fe16N2 may offer a pathway for future spintronics logic and memory devices. Realization of sub‐10 nm spin‐based logic and memory devices relies on materials with perpendicular magnetic anisotropy (PMA) that can provide large thermal stability and low switching current. This article demonstrates that Fe16N2, a heavy‐metal‐free, low‐damping, and non‐interface perpendicular material, may satisfy the above requirements for sub‐10 nm spintronic devices, due to its large PMA and small damping constant.</abstract><cop>Berlin</cop><pub>WILEY?VCH Verlag Berlin GmbH</pub><doi>10.1002/pssr.201900089</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9884-302X</orcidid><orcidid>https://orcid.org/0000-0003-2815-6624</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6254
ispartof Physica status solidi. PSS-RRL. Rapid research letters, 2019-07, Vol.13 (7), p.n/a
issn 1862-6254
1862-6270
language eng
recordid cdi_proquest_journals_2264460958
source Wiley Online Library Journals Frontfile Complete
subjects Anisotropy
Crystal structure
Crystallinity
Damping
damping constant
Fe16N2
Ferromagnetic materials
Ferromagnetic resonance
First principles
Giant magnetoresistance
Iron nitride
Magnetic anisotropy
Magnetic materials
Magnetic properties
Magnetoresistance
Magnetoresistivity
Memory devices
perpendicular magnetic anisotropy
spintronic devices
Spintronics
Thermal stability
Thin films
title Heavy‐Metal‐Free, Low‐Damping, and Non‐Interface Perpendicular Fe16N2 Thin Film and Magnetoresistance Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heavy%E2%80%90Metal%E2%80%90Free,%20Low%E2%80%90Damping,%20and%20Non%E2%80%90Interface%20Perpendicular%20Fe16N2%20Thin%20Film%20and%20Magnetoresistance%20Device&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Li,%20Xuan&rft.date=2019-07&rft.volume=13&rft.issue=7&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.201900089&rft_dat=%3Cproquest_wiley%3E2264460958%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264460958&rft_id=info:pmid/&rfr_iscdi=true