Heavy‐Metal‐Free, Low‐Damping, and Non‐Interface Perpendicular Fe16N2 Thin Film and Magnetoresistance Device
Realization of sub‐10 nm spin‐based logic and memory devices relies on the development of magnetic materials with perpendicular magnetic anisotropy that can provide low switching current and large thermal stability simultaneously. In this work, the authors report on one promising candidate, Fe16N2,...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. PSS-RRL. Rapid research letters 2019-07, Vol.13 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Physica status solidi. PSS-RRL. Rapid research letters |
container_volume | 13 |
creator | Li, Xuan Yang, Meiyin Jamali, Mahdi Shi, Fengyuan Kang, Shishou Jiang, Yanfeng Zhang, Xiaowei Li, Hongshi Okatov, Sergey Faleev, Sergey Kalitsov, Alan Yu, Guanghua Voyles, Paul M. Mryasov, Oleg N. Wang, Jian‐Ping |
description | Realization of sub‐10 nm spin‐based logic and memory devices relies on the development of magnetic materials with perpendicular magnetic anisotropy that can provide low switching current and large thermal stability simultaneously. In this work, the authors report on one promising candidate, Fe16N2, a heavy‐metal‐free, non‐interface perpendicular magnetic material and demonstrate a perpendicularly magnetized current‐perpendicular‐to‐plane (CPP) giant magnetoresistance (GMR) device based on Fe16N2. The crystalline‐based perpendicular anisotropy of Fe16N2 in the CPP GMR device is measured to be about 1.9 × 106 J m−3 (1.9 × 107 erg cm−3), which is sufficient to maintain the thermal stability of sub‐10 nm devices. A first principle calculation is performed to support this large magnitude of the perpendicular anisotropy. Moreover, the Gilbert damping constant of the Fe16N2 thin film (α ≈0.01) measured by ferromagnetic resonance (FMR) is lower than for most existing materials with crystalline perpendicular magnetic anisotropy. The non‐interface perpendicular anisotropy and low damping properties of Fe16N2 may offer a pathway for future spintronics logic and memory devices.
Realization of sub‐10 nm spin‐based logic and memory devices relies on materials with perpendicular magnetic anisotropy (PMA) that can provide large thermal stability and low switching current. This article demonstrates that Fe16N2, a heavy‐metal‐free, low‐damping, and non‐interface perpendicular material, may satisfy the above requirements for sub‐10 nm spintronic devices, due to its large PMA and small damping constant. |
doi_str_mv | 10.1002/pssr.201900089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2264460958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2264460958</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2339-e2bcde8a2aef1e254d397bc561cf9307bea9c264470bc25b067861b3dd96be2c3</originalsourceid><addsrcrecordid>eNo9UE1PwkAU3BhNRPTquYlXivvRbrtHA1ZIAIngebPdvuKSsq3bAuHmT_A3-kssYjjNvJeZNy-D0D3BfYIxfazq2vUpJgJjHIsL1CExpz6nEb488zC4Rjd1vcY4FFHAOqgZgdodfr6-p9CoosXEAfS8Sblv-VBtKmNXPU_ZzJuVtl2NbQMuVxq8ObgKbGb0tlDOS4DwGfWWH8Z6iSk2f5apWlloSge1qRtlW9MQdkbDLbrKVVHD3T920XvyvByM_Mnry3jwNPErypjwgaY6g1hRBTmB9veMiSjVISc6FwxHKSihKQ-CCKeahinmUcxJyrJM8BSoZl30cLpbufJzC3Uj1-XW2TZS0qOPYxHGrUqcVHtTwEFWzmyUO0iC5bFWeaxVnmuV88Xi7TyxX6mRcrc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2264460958</pqid></control><display><type>article</type><title>Heavy‐Metal‐Free, Low‐Damping, and Non‐Interface Perpendicular Fe16N2 Thin Film and Magnetoresistance Device</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Xuan ; Yang, Meiyin ; Jamali, Mahdi ; Shi, Fengyuan ; Kang, Shishou ; Jiang, Yanfeng ; Zhang, Xiaowei ; Li, Hongshi ; Okatov, Sergey ; Faleev, Sergey ; Kalitsov, Alan ; Yu, Guanghua ; Voyles, Paul M. ; Mryasov, Oleg N. ; Wang, Jian‐Ping</creator><creatorcontrib>Li, Xuan ; Yang, Meiyin ; Jamali, Mahdi ; Shi, Fengyuan ; Kang, Shishou ; Jiang, Yanfeng ; Zhang, Xiaowei ; Li, Hongshi ; Okatov, Sergey ; Faleev, Sergey ; Kalitsov, Alan ; Yu, Guanghua ; Voyles, Paul M. ; Mryasov, Oleg N. ; Wang, Jian‐Ping</creatorcontrib><description>Realization of sub‐10 nm spin‐based logic and memory devices relies on the development of magnetic materials with perpendicular magnetic anisotropy that can provide low switching current and large thermal stability simultaneously. In this work, the authors report on one promising candidate, Fe16N2, a heavy‐metal‐free, non‐interface perpendicular magnetic material and demonstrate a perpendicularly magnetized current‐perpendicular‐to‐plane (CPP) giant magnetoresistance (GMR) device based on Fe16N2. The crystalline‐based perpendicular anisotropy of Fe16N2 in the CPP GMR device is measured to be about 1.9 × 106 J m−3 (1.9 × 107 erg cm−3), which is sufficient to maintain the thermal stability of sub‐10 nm devices. A first principle calculation is performed to support this large magnitude of the perpendicular anisotropy. Moreover, the Gilbert damping constant of the Fe16N2 thin film (α ≈0.01) measured by ferromagnetic resonance (FMR) is lower than for most existing materials with crystalline perpendicular magnetic anisotropy. The non‐interface perpendicular anisotropy and low damping properties of Fe16N2 may offer a pathway for future spintronics logic and memory devices.
Realization of sub‐10 nm spin‐based logic and memory devices relies on materials with perpendicular magnetic anisotropy (PMA) that can provide large thermal stability and low switching current. This article demonstrates that Fe16N2, a heavy‐metal‐free, low‐damping, and non‐interface perpendicular material, may satisfy the above requirements for sub‐10 nm spintronic devices, due to its large PMA and small damping constant.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.201900089</identifier><language>eng</language><publisher>Berlin: WILEY?VCH Verlag Berlin GmbH</publisher><subject>Anisotropy ; Crystal structure ; Crystallinity ; Damping ; damping constant ; Fe16N2 ; Ferromagnetic materials ; Ferromagnetic resonance ; First principles ; Giant magnetoresistance ; Iron nitride ; Magnetic anisotropy ; Magnetic materials ; Magnetic properties ; Magnetoresistance ; Magnetoresistivity ; Memory devices ; perpendicular magnetic anisotropy ; spintronic devices ; Spintronics ; Thermal stability ; Thin films</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2019-07, Vol.13 (7), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9884-302X ; 0000-0003-2815-6624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssr.201900089$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssr.201900089$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Xuan</creatorcontrib><creatorcontrib>Yang, Meiyin</creatorcontrib><creatorcontrib>Jamali, Mahdi</creatorcontrib><creatorcontrib>Shi, Fengyuan</creatorcontrib><creatorcontrib>Kang, Shishou</creatorcontrib><creatorcontrib>Jiang, Yanfeng</creatorcontrib><creatorcontrib>Zhang, Xiaowei</creatorcontrib><creatorcontrib>Li, Hongshi</creatorcontrib><creatorcontrib>Okatov, Sergey</creatorcontrib><creatorcontrib>Faleev, Sergey</creatorcontrib><creatorcontrib>Kalitsov, Alan</creatorcontrib><creatorcontrib>Yu, Guanghua</creatorcontrib><creatorcontrib>Voyles, Paul M.</creatorcontrib><creatorcontrib>Mryasov, Oleg N.</creatorcontrib><creatorcontrib>Wang, Jian‐Ping</creatorcontrib><title>Heavy‐Metal‐Free, Low‐Damping, and Non‐Interface Perpendicular Fe16N2 Thin Film and Magnetoresistance Device</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>Realization of sub‐10 nm spin‐based logic and memory devices relies on the development of magnetic materials with perpendicular magnetic anisotropy that can provide low switching current and large thermal stability simultaneously. In this work, the authors report on one promising candidate, Fe16N2, a heavy‐metal‐free, non‐interface perpendicular magnetic material and demonstrate a perpendicularly magnetized current‐perpendicular‐to‐plane (CPP) giant magnetoresistance (GMR) device based on Fe16N2. The crystalline‐based perpendicular anisotropy of Fe16N2 in the CPP GMR device is measured to be about 1.9 × 106 J m−3 (1.9 × 107 erg cm−3), which is sufficient to maintain the thermal stability of sub‐10 nm devices. A first principle calculation is performed to support this large magnitude of the perpendicular anisotropy. Moreover, the Gilbert damping constant of the Fe16N2 thin film (α ≈0.01) measured by ferromagnetic resonance (FMR) is lower than for most existing materials with crystalline perpendicular magnetic anisotropy. The non‐interface perpendicular anisotropy and low damping properties of Fe16N2 may offer a pathway for future spintronics logic and memory devices.
Realization of sub‐10 nm spin‐based logic and memory devices relies on materials with perpendicular magnetic anisotropy (PMA) that can provide large thermal stability and low switching current. This article demonstrates that Fe16N2, a heavy‐metal‐free, low‐damping, and non‐interface perpendicular material, may satisfy the above requirements for sub‐10 nm spintronic devices, due to its large PMA and small damping constant.</description><subject>Anisotropy</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Damping</subject><subject>damping constant</subject><subject>Fe16N2</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetic resonance</subject><subject>First principles</subject><subject>Giant magnetoresistance</subject><subject>Iron nitride</subject><subject>Magnetic anisotropy</subject><subject>Magnetic materials</subject><subject>Magnetic properties</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Memory devices</subject><subject>perpendicular magnetic anisotropy</subject><subject>spintronic devices</subject><subject>Spintronics</subject><subject>Thermal stability</subject><subject>Thin films</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UE1PwkAU3BhNRPTquYlXivvRbrtHA1ZIAIngebPdvuKSsq3bAuHmT_A3-kssYjjNvJeZNy-D0D3BfYIxfazq2vUpJgJjHIsL1CExpz6nEb488zC4Rjd1vcY4FFHAOqgZgdodfr6-p9CoosXEAfS8Sblv-VBtKmNXPU_ZzJuVtl2NbQMuVxq8ObgKbGb0tlDOS4DwGfWWH8Z6iSk2f5apWlloSge1qRtlW9MQdkbDLbrKVVHD3T920XvyvByM_Mnry3jwNPErypjwgaY6g1hRBTmB9veMiSjVISc6FwxHKSihKQ-CCKeahinmUcxJyrJM8BSoZl30cLpbufJzC3Uj1-XW2TZS0qOPYxHGrUqcVHtTwEFWzmyUO0iC5bFWeaxVnmuV88Xi7TyxX6mRcrc</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Li, Xuan</creator><creator>Yang, Meiyin</creator><creator>Jamali, Mahdi</creator><creator>Shi, Fengyuan</creator><creator>Kang, Shishou</creator><creator>Jiang, Yanfeng</creator><creator>Zhang, Xiaowei</creator><creator>Li, Hongshi</creator><creator>Okatov, Sergey</creator><creator>Faleev, Sergey</creator><creator>Kalitsov, Alan</creator><creator>Yu, Guanghua</creator><creator>Voyles, Paul M.</creator><creator>Mryasov, Oleg N.</creator><creator>Wang, Jian‐Ping</creator><general>WILEY?VCH Verlag Berlin GmbH</general><general>Wiley Subscription Services, Inc</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9884-302X</orcidid><orcidid>https://orcid.org/0000-0003-2815-6624</orcidid></search><sort><creationdate>201907</creationdate><title>Heavy‐Metal‐Free, Low‐Damping, and Non‐Interface Perpendicular Fe16N2 Thin Film and Magnetoresistance Device</title><author>Li, Xuan ; Yang, Meiyin ; Jamali, Mahdi ; Shi, Fengyuan ; Kang, Shishou ; Jiang, Yanfeng ; Zhang, Xiaowei ; Li, Hongshi ; Okatov, Sergey ; Faleev, Sergey ; Kalitsov, Alan ; Yu, Guanghua ; Voyles, Paul M. ; Mryasov, Oleg N. ; Wang, Jian‐Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2339-e2bcde8a2aef1e254d397bc561cf9307bea9c264470bc25b067861b3dd96be2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Damping</topic><topic>damping constant</topic><topic>Fe16N2</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetic resonance</topic><topic>First principles</topic><topic>Giant magnetoresistance</topic><topic>Iron nitride</topic><topic>Magnetic anisotropy</topic><topic>Magnetic materials</topic><topic>Magnetic properties</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Memory devices</topic><topic>perpendicular magnetic anisotropy</topic><topic>spintronic devices</topic><topic>Spintronics</topic><topic>Thermal stability</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuan</creatorcontrib><creatorcontrib>Yang, Meiyin</creatorcontrib><creatorcontrib>Jamali, Mahdi</creatorcontrib><creatorcontrib>Shi, Fengyuan</creatorcontrib><creatorcontrib>Kang, Shishou</creatorcontrib><creatorcontrib>Jiang, Yanfeng</creatorcontrib><creatorcontrib>Zhang, Xiaowei</creatorcontrib><creatorcontrib>Li, Hongshi</creatorcontrib><creatorcontrib>Okatov, Sergey</creatorcontrib><creatorcontrib>Faleev, Sergey</creatorcontrib><creatorcontrib>Kalitsov, Alan</creatorcontrib><creatorcontrib>Yu, Guanghua</creatorcontrib><creatorcontrib>Voyles, Paul M.</creatorcontrib><creatorcontrib>Mryasov, Oleg N.</creatorcontrib><creatorcontrib>Wang, Jian‐Ping</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xuan</au><au>Yang, Meiyin</au><au>Jamali, Mahdi</au><au>Shi, Fengyuan</au><au>Kang, Shishou</au><au>Jiang, Yanfeng</au><au>Zhang, Xiaowei</au><au>Li, Hongshi</au><au>Okatov, Sergey</au><au>Faleev, Sergey</au><au>Kalitsov, Alan</au><au>Yu, Guanghua</au><au>Voyles, Paul M.</au><au>Mryasov, Oleg N.</au><au>Wang, Jian‐Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heavy‐Metal‐Free, Low‐Damping, and Non‐Interface Perpendicular Fe16N2 Thin Film and Magnetoresistance Device</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2019-07</date><risdate>2019</risdate><volume>13</volume><issue>7</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>Realization of sub‐10 nm spin‐based logic and memory devices relies on the development of magnetic materials with perpendicular magnetic anisotropy that can provide low switching current and large thermal stability simultaneously. In this work, the authors report on one promising candidate, Fe16N2, a heavy‐metal‐free, non‐interface perpendicular magnetic material and demonstrate a perpendicularly magnetized current‐perpendicular‐to‐plane (CPP) giant magnetoresistance (GMR) device based on Fe16N2. The crystalline‐based perpendicular anisotropy of Fe16N2 in the CPP GMR device is measured to be about 1.9 × 106 J m−3 (1.9 × 107 erg cm−3), which is sufficient to maintain the thermal stability of sub‐10 nm devices. A first principle calculation is performed to support this large magnitude of the perpendicular anisotropy. Moreover, the Gilbert damping constant of the Fe16N2 thin film (α ≈0.01) measured by ferromagnetic resonance (FMR) is lower than for most existing materials with crystalline perpendicular magnetic anisotropy. The non‐interface perpendicular anisotropy and low damping properties of Fe16N2 may offer a pathway for future spintronics logic and memory devices.
Realization of sub‐10 nm spin‐based logic and memory devices relies on materials with perpendicular magnetic anisotropy (PMA) that can provide large thermal stability and low switching current. This article demonstrates that Fe16N2, a heavy‐metal‐free, low‐damping, and non‐interface perpendicular material, may satisfy the above requirements for sub‐10 nm spintronic devices, due to its large PMA and small damping constant.</abstract><cop>Berlin</cop><pub>WILEY?VCH Verlag Berlin GmbH</pub><doi>10.1002/pssr.201900089</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9884-302X</orcidid><orcidid>https://orcid.org/0000-0003-2815-6624</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6254 |
ispartof | Physica status solidi. PSS-RRL. Rapid research letters, 2019-07, Vol.13 (7), p.n/a |
issn | 1862-6254 1862-6270 |
language | eng |
recordid | cdi_proquest_journals_2264460958 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anisotropy Crystal structure Crystallinity Damping damping constant Fe16N2 Ferromagnetic materials Ferromagnetic resonance First principles Giant magnetoresistance Iron nitride Magnetic anisotropy Magnetic materials Magnetic properties Magnetoresistance Magnetoresistivity Memory devices perpendicular magnetic anisotropy spintronic devices Spintronics Thermal stability Thin films |
title | Heavy‐Metal‐Free, Low‐Damping, and Non‐Interface Perpendicular Fe16N2 Thin Film and Magnetoresistance Device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heavy%E2%80%90Metal%E2%80%90Free,%20Low%E2%80%90Damping,%20and%20Non%E2%80%90Interface%20Perpendicular%20Fe16N2%20Thin%20Film%20and%20Magnetoresistance%20Device&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Li,%20Xuan&rft.date=2019-07&rft.volume=13&rft.issue=7&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.201900089&rft_dat=%3Cproquest_wiley%3E2264460958%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264460958&rft_id=info:pmid/&rfr_iscdi=true |