Heavy‐Metal‐Free, Low‐Damping, and Non‐Interface Perpendicular Fe16N2 Thin Film and Magnetoresistance Device

Realization of sub‐10 nm spin‐based logic and memory devices relies on the development of magnetic materials with perpendicular magnetic anisotropy that can provide low switching current and large thermal stability simultaneously. In this work, the authors report on one promising candidate, Fe16N2,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. PSS-RRL. Rapid research letters 2019-07, Vol.13 (7), p.n/a
Hauptverfasser: Li, Xuan, Yang, Meiyin, Jamali, Mahdi, Shi, Fengyuan, Kang, Shishou, Jiang, Yanfeng, Zhang, Xiaowei, Li, Hongshi, Okatov, Sergey, Faleev, Sergey, Kalitsov, Alan, Yu, Guanghua, Voyles, Paul M., Mryasov, Oleg N., Wang, Jian‐Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Realization of sub‐10 nm spin‐based logic and memory devices relies on the development of magnetic materials with perpendicular magnetic anisotropy that can provide low switching current and large thermal stability simultaneously. In this work, the authors report on one promising candidate, Fe16N2, a heavy‐metal‐free, non‐interface perpendicular magnetic material and demonstrate a perpendicularly magnetized current‐perpendicular‐to‐plane (CPP) giant magnetoresistance (GMR) device based on Fe16N2. The crystalline‐based perpendicular anisotropy of Fe16N2 in the CPP GMR device is measured to be about 1.9 × 106 J m−3 (1.9 × 107 erg cm−3), which is sufficient to maintain the thermal stability of sub‐10 nm devices. A first principle calculation is performed to support this large magnitude of the perpendicular anisotropy. Moreover, the Gilbert damping constant of the Fe16N2 thin film (α ≈0.01) measured by ferromagnetic resonance (FMR) is lower than for most existing materials with crystalline perpendicular magnetic anisotropy. The non‐interface perpendicular anisotropy and low damping properties of Fe16N2 may offer a pathway for future spintronics logic and memory devices. Realization of sub‐10 nm spin‐based logic and memory devices relies on materials with perpendicular magnetic anisotropy (PMA) that can provide large thermal stability and low switching current. This article demonstrates that Fe16N2, a heavy‐metal‐free, low‐damping, and non‐interface perpendicular material, may satisfy the above requirements for sub‐10 nm spintronic devices, due to its large PMA and small damping constant.
ISSN:1862-6254
1862-6270
DOI:10.1002/pssr.201900089