Rogers–Shephard and local Loomis–Whitney type inequalities
We provide functional analogues of the classical geometric inequality of Rogers and Shephard on products of volumes of sections and projections. As a consequence we recover (and obtain some new) functional versions of Rogers–Shephard type inequalities as well as some generalizations of the geometric...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2019-08, Vol.374 (3-4), p.1719-1771 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1771 |
---|---|
container_issue | 3-4 |
container_start_page | 1719 |
container_title | Mathematische annalen |
container_volume | 374 |
creator | Alonso-Gutiérrez, David Artstein-Avidan, Shiri González Merino, Bernardo Jiménez, Carlos Hugo Villa, Rafael |
description | We provide functional analogues of the classical geometric inequality of Rogers and Shephard on products of volumes of sections and projections. As a consequence we recover (and obtain some new) functional versions of Rogers–Shephard type inequalities as well as some generalizations of the geometric Rogers–Shephard inequality in the case where the subspaces intersect. These generalizations can be regarded as sharp local reverse Loomis–Whitney inequalities. We also obtain a sharp local Loomis–Whitney inequality. |
doi_str_mv | 10.1007/s00208-019-01834-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2264235836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2264235836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c194fd8c7380b9f2fa16804f0f82115952cfb942c511aaf463f3de3c081d38153</originalsourceid><addsrcrecordid>eNp9kM1Kw0AQxxdRsFZfwFPAc3RmJ5tuLoIUrUJB8AOPy3aza1PSJN1ND735Dr6hT-LWCN48DHP4fwzzY-wc4RIBJlcBgINMAYs4krKUDtgIM-IpSpgcslHURSok4TE7CWEFAAQgRuz6qX23Pnx9fD4vbbfUvkx0UyZ1a3SdzNt2Xe21t2XVN3aX9LvOJlVjN1tdV31lwyk7croO9ux3j9nr3e3L9D6dP84epjfz1FBOfWqwyFwpzYQkLArHncZcQubASY4oCsGNWxQZNwJRa5fl5Ki0ZEBiSRIFjdnF0Nv5drO1oVerduubeFJxnmec4mt5dPHBZXwbgrdOdb5aa79TCGrPSQ2cVOSkfjgpiiEaQiGamwjjr_qf1DfXQmvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2264235836</pqid></control><display><type>article</type><title>Rogers–Shephard and local Loomis–Whitney type inequalities</title><source>SpringerNature Journals</source><creator>Alonso-Gutiérrez, David ; Artstein-Avidan, Shiri ; González Merino, Bernardo ; Jiménez, Carlos Hugo ; Villa, Rafael</creator><creatorcontrib>Alonso-Gutiérrez, David ; Artstein-Avidan, Shiri ; González Merino, Bernardo ; Jiménez, Carlos Hugo ; Villa, Rafael</creatorcontrib><description>We provide functional analogues of the classical geometric inequality of Rogers and Shephard on products of volumes of sections and projections. As a consequence we recover (and obtain some new) functional versions of Rogers–Shephard type inequalities as well as some generalizations of the geometric Rogers–Shephard inequality in the case where the subspaces intersect. These generalizations can be regarded as sharp local reverse Loomis–Whitney inequalities. We also obtain a sharp local Loomis–Whitney inequality.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-019-01834-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Inequalities ; Inequality ; Mathematics ; Mathematics and Statistics ; Subspaces</subject><ispartof>Mathematische annalen, 2019-08, Vol.374 (3-4), p.1719-1771</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c194fd8c7380b9f2fa16804f0f82115952cfb942c511aaf463f3de3c081d38153</citedby><cites>FETCH-LOGICAL-c363t-c194fd8c7380b9f2fa16804f0f82115952cfb942c511aaf463f3de3c081d38153</cites><orcidid>0000-0002-5402-4150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-019-01834-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-019-01834-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Alonso-Gutiérrez, David</creatorcontrib><creatorcontrib>Artstein-Avidan, Shiri</creatorcontrib><creatorcontrib>González Merino, Bernardo</creatorcontrib><creatorcontrib>Jiménez, Carlos Hugo</creatorcontrib><creatorcontrib>Villa, Rafael</creatorcontrib><title>Rogers–Shephard and local Loomis–Whitney type inequalities</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>We provide functional analogues of the classical geometric inequality of Rogers and Shephard on products of volumes of sections and projections. As a consequence we recover (and obtain some new) functional versions of Rogers–Shephard type inequalities as well as some generalizations of the geometric Rogers–Shephard inequality in the case where the subspaces intersect. These generalizations can be regarded as sharp local reverse Loomis–Whitney inequalities. We also obtain a sharp local Loomis–Whitney inequality.</description><subject>Inequalities</subject><subject>Inequality</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Subspaces</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AQxxdRsFZfwFPAc3RmJ5tuLoIUrUJB8AOPy3aza1PSJN1ND735Dr6hT-LWCN48DHP4fwzzY-wc4RIBJlcBgINMAYs4krKUDtgIM-IpSpgcslHURSok4TE7CWEFAAQgRuz6qX23Pnx9fD4vbbfUvkx0UyZ1a3SdzNt2Xe21t2XVN3aX9LvOJlVjN1tdV31lwyk7croO9ux3j9nr3e3L9D6dP84epjfz1FBOfWqwyFwpzYQkLArHncZcQubASY4oCsGNWxQZNwJRa5fl5Ki0ZEBiSRIFjdnF0Nv5drO1oVerduubeFJxnmec4mt5dPHBZXwbgrdOdb5aa79TCGrPSQ2cVOSkfjgpiiEaQiGamwjjr_qf1DfXQmvg</recordid><startdate>20190806</startdate><enddate>20190806</enddate><creator>Alonso-Gutiérrez, David</creator><creator>Artstein-Avidan, Shiri</creator><creator>González Merino, Bernardo</creator><creator>Jiménez, Carlos Hugo</creator><creator>Villa, Rafael</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5402-4150</orcidid></search><sort><creationdate>20190806</creationdate><title>Rogers–Shephard and local Loomis–Whitney type inequalities</title><author>Alonso-Gutiérrez, David ; Artstein-Avidan, Shiri ; González Merino, Bernardo ; Jiménez, Carlos Hugo ; Villa, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c194fd8c7380b9f2fa16804f0f82115952cfb942c511aaf463f3de3c081d38153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Inequalities</topic><topic>Inequality</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonso-Gutiérrez, David</creatorcontrib><creatorcontrib>Artstein-Avidan, Shiri</creatorcontrib><creatorcontrib>González Merino, Bernardo</creatorcontrib><creatorcontrib>Jiménez, Carlos Hugo</creatorcontrib><creatorcontrib>Villa, Rafael</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonso-Gutiérrez, David</au><au>Artstein-Avidan, Shiri</au><au>González Merino, Bernardo</au><au>Jiménez, Carlos Hugo</au><au>Villa, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rogers–Shephard and local Loomis–Whitney type inequalities</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2019-08-06</date><risdate>2019</risdate><volume>374</volume><issue>3-4</issue><spage>1719</spage><epage>1771</epage><pages>1719-1771</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>We provide functional analogues of the classical geometric inequality of Rogers and Shephard on products of volumes of sections and projections. As a consequence we recover (and obtain some new) functional versions of Rogers–Shephard type inequalities as well as some generalizations of the geometric Rogers–Shephard inequality in the case where the subspaces intersect. These generalizations can be regarded as sharp local reverse Loomis–Whitney inequalities. We also obtain a sharp local Loomis–Whitney inequality.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-019-01834-3</doi><tpages>53</tpages><orcidid>https://orcid.org/0000-0002-5402-4150</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2019-08, Vol.374 (3-4), p.1719-1771 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_2264235836 |
source | SpringerNature Journals |
subjects | Inequalities Inequality Mathematics Mathematics and Statistics Subspaces |
title | Rogers–Shephard and local Loomis–Whitney type inequalities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-09T08%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rogers%E2%80%93Shephard%20and%20local%20Loomis%E2%80%93Whitney%20type%20inequalities&rft.jtitle=Mathematische%20annalen&rft.au=Alonso-Guti%C3%A9rrez,%20David&rft.date=2019-08-06&rft.volume=374&rft.issue=3-4&rft.spage=1719&rft.epage=1771&rft.pages=1719-1771&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-019-01834-3&rft_dat=%3Cproquest_cross%3E2264235836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264235836&rft_id=info:pmid/&rfr_iscdi=true |