Rogers–Shephard and local Loomis–Whitney type inequalities

We provide functional analogues of the classical geometric inequality of Rogers and Shephard on products of volumes of sections and projections. As a consequence we recover (and obtain some new) functional versions of Rogers–Shephard type inequalities as well as some generalizations of the geometric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2019-08, Vol.374 (3-4), p.1719-1771
Hauptverfasser: Alonso-Gutiérrez, David, Artstein-Avidan, Shiri, González Merino, Bernardo, Jiménez, Carlos Hugo, Villa, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide functional analogues of the classical geometric inequality of Rogers and Shephard on products of volumes of sections and projections. As a consequence we recover (and obtain some new) functional versions of Rogers–Shephard type inequalities as well as some generalizations of the geometric Rogers–Shephard inequality in the case where the subspaces intersect. These generalizations can be regarded as sharp local reverse Loomis–Whitney inequalities. We also obtain a sharp local Loomis–Whitney inequality.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-019-01834-3