Fast and slow decaying solutions for H 1 -supercritical quasilinear Schrödinger equations
We consider the following quasilinear Schrödinger equations of the form ▵u-εV(x)u+u▵u2+up=0,u>0inRNandlim|x|→∞u(x)=0,where N≥3,p>N+2N-2,ε>0 and V(x) is a positive function. By imposing appropriate conditions on V(x), we prove that, for ε=1, the existence of infinity many positive solutions...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2019-08, Vol.58 (4), p.1-24 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the following quasilinear Schrödinger equations of the form ▵u-εV(x)u+u▵u2+up=0,u>0inRNandlim|x|→∞u(x)=0,where N≥3,p>N+2N-2,ε>0 and V(x) is a positive function. By imposing appropriate conditions on V(x), we prove that, for ε=1, the existence of infinity many positive solutions with slow decaying O(|x|-2p-1) at infinity if p>N+2N-2 and, for ε sufficiently small, a positive solution with fast decaying O(|x|2-N) if N+2N-2 |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-019-1594-0 |