Symmetry breaking in solitary solutions to the Hodgkin–Huxley model
This paper presents necessary and sufficient conditions for the existence of bright/dark solitary solutions in the Hodgkin–Huxley model. The second-order analytic solitary solutions are derived using the generalized differential operator technique. It is shown that the heteroclinic bifurcation in th...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2019-07, Vol.97 (1), p.571-582 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents necessary and sufficient conditions for the existence of bright/dark solitary solutions in the Hodgkin–Huxley model. The second-order analytic solitary solutions are derived using the generalized differential operator technique. It is shown that the heteroclinic bifurcation in the Hodgkin–Huxley model yields a symmetry breaking effect. Trajectories of solitary solutions before the bifurcation lie on manifolds of one of the saddle points and the separatrix between periodic and non-periodic solutions. A new separatrix emerges after the heteroclinic bifurcation—but solitary solutions do not lie on this trajectory. This symmetry breaking effect is demonstrated using analytic and computational experiments. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-019-04998-4 |