Symmetry breaking in solitary solutions to the Hodgkin–Huxley model

This paper presents necessary and sufficient conditions for the existence of bright/dark solitary solutions in the Hodgkin–Huxley model. The second-order analytic solitary solutions are derived using the generalized differential operator technique. It is shown that the heteroclinic bifurcation in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2019-07, Vol.97 (1), p.571-582
Hauptverfasser: Telksnys, Tadas, Navickas, Zenonas, Timofejeva, Inga, Marcinkevicius, Romas, Ragulskis, Minvydas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents necessary and sufficient conditions for the existence of bright/dark solitary solutions in the Hodgkin–Huxley model. The second-order analytic solitary solutions are derived using the generalized differential operator technique. It is shown that the heteroclinic bifurcation in the Hodgkin–Huxley model yields a symmetry breaking effect. Trajectories of solitary solutions before the bifurcation lie on manifolds of one of the saddle points and the separatrix between periodic and non-periodic solutions. A new separatrix emerges after the heteroclinic bifurcation—but solitary solutions do not lie on this trajectory. This symmetry breaking effect is demonstrated using analytic and computational experiments.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-019-04998-4