INFERENCE IN GROUP FACTOR MODELS WITH AN APPLICATION TO MIXED-FREQUENCY DATA
We derive asymptotic properties of estimators and test statistics to determine—in a grouped data setting—common versus group-specific factors. Despite the fact that our test statistic for the number of common factors, under the null, involves a parameter at the boundary (related to unit canonical co...
Gespeichert in:
Veröffentlicht in: | Econometrica 2019-07, Vol.87 (4), p.1267-1305 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1305 |
---|---|
container_issue | 4 |
container_start_page | 1267 |
container_title | Econometrica |
container_volume | 87 |
creator | Andreou, E. Gagliardini, P. Ghysels, E. Rubin, M. |
description | We derive asymptotic properties of estimators and test statistics to determine—in a grouped data setting—common versus group-specific factors. Despite the fact that our test statistic for the number of common factors, under the null, involves a parameter at the boundary (related to unit canonical correlations), we derive a parameterfree asymptotic Gaussian distribution. We show how the group factor setting applies to mixed-frequency data. As an empirical illustration, we address the question whether Industrial Production (IP) is still the dominant factor driving the U.S. economy using a mixed-frequency data panel of IP and non-IP sectors. We find that a single common factor explains 89% of IP output growth and 61% of total GDP growth despite the diminishing role of manufacturing. |
doi_str_mv | 10.3982/ECTA14690 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2263536431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45172347</jstor_id><sourcerecordid>45172347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4028-dda8ce64dd755defdef921afba1c4a3833bbc4738abf6d557f204783e0a927ab3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFYP_oMF8eAhul_Jbo4h3bSBNKkxRT0tm2QDLdW0SYv037saES_CwMzheWaYF4BrjO6pL8iDDIsAM89HJ2Bku3AQ8cgpGCGEieN7gpyDi75fI4RcWyOQxGkkc5mGEsYpnObZcgGjICyyHM6ziUye4HNczGCQwmCxSOIwKOIshUUG5_GLnDhRLh-X1n6Fk6AILsFZoze9ufrpY7CMZBHOnCSbWjVxKoaIcOpai8p4rK6569amseUTrJtS44ppKigty4pxKnTZeLXr8oYgxgU1SPuE65KOwc2wd9u1u4Pp92rdHrp3e1IR4lGXeoxiS90NVNW1fd-ZRm271Zvujgoj9RWW-g3LsnhgP1Ybc_wf_J6ITY8J69wOzrrft91fh1DEFXMxJ9S-8Qlacm7b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2263536431</pqid></control><display><type>article</type><title>INFERENCE IN GROUP FACTOR MODELS WITH AN APPLICATION TO MIXED-FREQUENCY DATA</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Andreou, E. ; Gagliardini, P. ; Ghysels, E. ; Rubin, M.</creator><creatorcontrib>Andreou, E. ; Gagliardini, P. ; Ghysels, E. ; Rubin, M.</creatorcontrib><description>We derive asymptotic properties of estimators and test statistics to determine—in a grouped data setting—common versus group-specific factors. Despite the fact that our test statistic for the number of common factors, under the null, involves a parameter at the boundary (related to unit canonical correlations), we derive a parameterfree asymptotic Gaussian distribution. We show how the group factor setting applies to mixed-frequency data. As an empirical illustration, we address the question whether Industrial Production (IP) is still the dominant factor driving the U.S. economy using a mixed-frequency data panel of IP and non-IP sectors. We find that a single common factor explains 89% of IP output growth and 61% of total GDP growth despite the diminishing role of manufacturing.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.3982/ECTA14690</identifier><language>eng</language><publisher>Evanston: Econometric Society</publisher><subject>canonical correlations ; Estimating techniques ; Industrial production ; Large panel ; mixed frequency ; output growth ; unobservable pervasive factors</subject><ispartof>Econometrica, 2019-07, Vol.87 (4), p.1267-1305</ispartof><rights>Copyright ©2019 The Econometric Society</rights><rights>2019 The Econometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4028-dda8ce64dd755defdef921afba1c4a3833bbc4738abf6d557f204783e0a927ab3</citedby><cites>FETCH-LOGICAL-c4028-dda8ce64dd755defdef921afba1c4a3833bbc4738abf6d557f204783e0a927ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45172347$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45172347$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Andreou, E.</creatorcontrib><creatorcontrib>Gagliardini, P.</creatorcontrib><creatorcontrib>Ghysels, E.</creatorcontrib><creatorcontrib>Rubin, M.</creatorcontrib><title>INFERENCE IN GROUP FACTOR MODELS WITH AN APPLICATION TO MIXED-FREQUENCY DATA</title><title>Econometrica</title><description>We derive asymptotic properties of estimators and test statistics to determine—in a grouped data setting—common versus group-specific factors. Despite the fact that our test statistic for the number of common factors, under the null, involves a parameter at the boundary (related to unit canonical correlations), we derive a parameterfree asymptotic Gaussian distribution. We show how the group factor setting applies to mixed-frequency data. As an empirical illustration, we address the question whether Industrial Production (IP) is still the dominant factor driving the U.S. economy using a mixed-frequency data panel of IP and non-IP sectors. We find that a single common factor explains 89% of IP output growth and 61% of total GDP growth despite the diminishing role of manufacturing.</description><subject>canonical correlations</subject><subject>Estimating techniques</subject><subject>Industrial production</subject><subject>Large panel</subject><subject>mixed frequency</subject><subject>output growth</subject><subject>unobservable pervasive factors</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFYP_oMF8eAhul_Jbo4h3bSBNKkxRT0tm2QDLdW0SYv037saES_CwMzheWaYF4BrjO6pL8iDDIsAM89HJ2Bku3AQ8cgpGCGEieN7gpyDi75fI4RcWyOQxGkkc5mGEsYpnObZcgGjICyyHM6ziUye4HNczGCQwmCxSOIwKOIshUUG5_GLnDhRLh-X1n6Fk6AILsFZoze9ufrpY7CMZBHOnCSbWjVxKoaIcOpai8p4rK6569amseUTrJtS44ppKigty4pxKnTZeLXr8oYgxgU1SPuE65KOwc2wd9u1u4Pp92rdHrp3e1IR4lGXeoxiS90NVNW1fd-ZRm271Zvujgoj9RWW-g3LsnhgP1Ybc_wf_J6ITY8J69wOzrrft91fh1DEFXMxJ9S-8Qlacm7b</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Andreou, E.</creator><creator>Gagliardini, P.</creator><creator>Ghysels, E.</creator><creator>Rubin, M.</creator><general>Econometric Society</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201907</creationdate><title>INFERENCE IN GROUP FACTOR MODELS WITH AN APPLICATION TO MIXED-FREQUENCY DATA</title><author>Andreou, E. ; Gagliardini, P. ; Ghysels, E. ; Rubin, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4028-dda8ce64dd755defdef921afba1c4a3833bbc4738abf6d557f204783e0a927ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>canonical correlations</topic><topic>Estimating techniques</topic><topic>Industrial production</topic><topic>Large panel</topic><topic>mixed frequency</topic><topic>output growth</topic><topic>unobservable pervasive factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreou, E.</creatorcontrib><creatorcontrib>Gagliardini, P.</creatorcontrib><creatorcontrib>Ghysels, E.</creatorcontrib><creatorcontrib>Rubin, M.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreou, E.</au><au>Gagliardini, P.</au><au>Ghysels, E.</au><au>Rubin, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>INFERENCE IN GROUP FACTOR MODELS WITH AN APPLICATION TO MIXED-FREQUENCY DATA</atitle><jtitle>Econometrica</jtitle><date>2019-07</date><risdate>2019</risdate><volume>87</volume><issue>4</issue><spage>1267</spage><epage>1305</epage><pages>1267-1305</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><abstract>We derive asymptotic properties of estimators and test statistics to determine—in a grouped data setting—common versus group-specific factors. Despite the fact that our test statistic for the number of common factors, under the null, involves a parameter at the boundary (related to unit canonical correlations), we derive a parameterfree asymptotic Gaussian distribution. We show how the group factor setting applies to mixed-frequency data. As an empirical illustration, we address the question whether Industrial Production (IP) is still the dominant factor driving the U.S. economy using a mixed-frequency data panel of IP and non-IP sectors. We find that a single common factor explains 89% of IP output growth and 61% of total GDP growth despite the diminishing role of manufacturing.</abstract><cop>Evanston</cop><pub>Econometric Society</pub><doi>10.3982/ECTA14690</doi><tpages>39</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9682 |
ispartof | Econometrica, 2019-07, Vol.87 (4), p.1267-1305 |
issn | 0012-9682 1468-0262 |
language | eng |
recordid | cdi_proquest_journals_2263536431 |
source | Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics |
subjects | canonical correlations Estimating techniques Industrial production Large panel mixed frequency output growth unobservable pervasive factors |
title | INFERENCE IN GROUP FACTOR MODELS WITH AN APPLICATION TO MIXED-FREQUENCY DATA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=INFERENCE%20IN%20GROUP%20FACTOR%20MODELS%20WITH%20AN%20APPLICATION%20TO%20MIXED-FREQUENCY%20DATA&rft.jtitle=Econometrica&rft.au=Andreou,%20E.&rft.date=2019-07&rft.volume=87&rft.issue=4&rft.spage=1267&rft.epage=1305&rft.pages=1267-1305&rft.issn=0012-9682&rft.eissn=1468-0262&rft_id=info:doi/10.3982/ECTA14690&rft_dat=%3Cjstor_proqu%3E45172347%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2263536431&rft_id=info:pmid/&rft_jstor_id=45172347&rfr_iscdi=true |