INFERENCE IN GROUP FACTOR MODELS WITH AN APPLICATION TO MIXED-FREQUENCY DATA

We derive asymptotic properties of estimators and test statistics to determine—in a grouped data setting—common versus group-specific factors. Despite the fact that our test statistic for the number of common factors, under the null, involves a parameter at the boundary (related to unit canonical co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrica 2019-07, Vol.87 (4), p.1267-1305
Hauptverfasser: Andreou, E., Gagliardini, P., Ghysels, E., Rubin, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive asymptotic properties of estimators and test statistics to determine—in a grouped data setting—common versus group-specific factors. Despite the fact that our test statistic for the number of common factors, under the null, involves a parameter at the boundary (related to unit canonical correlations), we derive a parameterfree asymptotic Gaussian distribution. We show how the group factor setting applies to mixed-frequency data. As an empirical illustration, we address the question whether Industrial Production (IP) is still the dominant factor driving the U.S. economy using a mixed-frequency data panel of IP and non-IP sectors. We find that a single common factor explains 89% of IP output growth and 61% of total GDP growth despite the diminishing role of manufacturing.
ISSN:0012-9682
1468-0262
DOI:10.3982/ECTA14690