INFERENCE IN GROUP FACTOR MODELS WITH AN APPLICATION TO MIXED-FREQUENCY DATA
We derive asymptotic properties of estimators and test statistics to determine—in a grouped data setting—common versus group-specific factors. Despite the fact that our test statistic for the number of common factors, under the null, involves a parameter at the boundary (related to unit canonical co...
Gespeichert in:
Veröffentlicht in: | Econometrica 2019-07, Vol.87 (4), p.1267-1305 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive asymptotic properties of estimators and test statistics to determine—in a grouped data setting—common versus group-specific factors. Despite the fact that our test statistic for the number of common factors, under the null, involves a parameter at the boundary (related to unit canonical correlations), we derive a parameterfree asymptotic Gaussian distribution. We show how the group factor setting applies to mixed-frequency data. As an empirical illustration, we address the question whether Industrial Production (IP) is still the dominant factor driving the U.S. economy using a mixed-frequency data panel of IP and non-IP sectors. We find that a single common factor explains 89% of IP output growth and 61% of total GDP growth despite the diminishing role of manufacturing. |
---|---|
ISSN: | 0012-9682 1468-0262 |
DOI: | 10.3982/ECTA14690 |