AN EXTENSION OF A THEOREM OF ZERMELO

We show that if (M, ∈1, ∈2) satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ∈1 and also when the membership relation is ∈2, and in both cases the formulas are allowed to contain both ∈1 and ∈2, then (M, ∈1) ≅ (M, ∈2), and the isomorphism is definable i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The bulletin of symbolic logic 2019-06, Vol.25 (2), p.208-212
1. Verfasser: VÄÄNÄNEN, JOUKO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue 2
container_start_page 208
container_title The bulletin of symbolic logic
container_volume 25
creator VÄÄNÄNEN, JOUKO
description We show that if (M, ∈1, ∈2) satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ∈1 and also when the membership relation is ∈2, and in both cases the formulas are allowed to contain both ∈1 and ∈2, then (M, ∈1) ≅ (M, ∈2), and the isomorphism is definable in (M, ∈1, ∈2). This extends Zermelo's 1930 theorem in [6].
doi_str_mv 10.1017/bsl.2019.15
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2263230964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26718176</jstor_id><sourcerecordid>26718176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-f7278a8e5af38eca64d6b80e09d2ba63e12fca54dc81e8a5ae670600aa9f780f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKsr18KA7mTqe_nOciipLbQdqBXETUinCViqU5N24b93SsXVuw8O98Ih5BZhgIDqaZW3AwpoBijOSA8NZ6XQhp93GZQptdHyklzlvAFALrnokYdqXti3pZ2_TOp5UY-KqliObb2ws-PzbhczO62vyUX02xxu_m6fvI7scjgup_XzZFhNy4ZR2JdRUaW9DsJHpkPjJV_LlYYAZk1XXrKANDZe8HWjMWgvfJAKJID3JioNkfXJ_al3l9rvQ8h7t2kP6aubdJRKRhkYyTvq8UQ1qc05heh26ePTpx-H4I4aXKfBHTU4FB19d6I3ed-mf5RKhRqVZL9EQ1S4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2263230964</pqid></control><display><type>article</type><title>AN EXTENSION OF A THEOREM OF ZERMELO</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Cambridge University Press Journals Complete</source><creator>VÄÄNÄNEN, JOUKO</creator><creatorcontrib>VÄÄNÄNEN, JOUKO</creatorcontrib><description>We show that if (M, ∈1, ∈2) satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ∈1 and also when the membership relation is ∈2, and in both cases the formulas are allowed to contain both ∈1 and ∈2, then (M, ∈1) ≅ (M, ∈2), and the isomorphism is definable in (M, ∈1, ∈2). This extends Zermelo's 1930 theorem in [6].</description><identifier>ISSN: 1079-8986</identifier><identifier>EISSN: 1943-5894</identifier><identifier>DOI: 10.1017/bsl.2019.15</identifier><language>eng</language><publisher>New York: Cambridge University Press</publisher><subject>Axioms ; Categoricity ; Communications ; First order theories ; Hypotheses ; Isomorphism ; Logical theorems ; Mathematical logic ; Mathematical relations ; Mathematical set theory ; Mathematical theorems ; Set theory ; Symmetry ; Theorems ; Zermelo Frankel set theory</subject><ispartof>The bulletin of symbolic logic, 2019-06, Vol.25 (2), p.208-212</ispartof><rights>2019, Association for Symbolic Logic</rights><rights>Copyright © The Association for Symbolic Logic 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-f7278a8e5af38eca64d6b80e09d2ba63e12fca54dc81e8a5ae670600aa9f780f3</citedby><cites>FETCH-LOGICAL-c320t-f7278a8e5af38eca64d6b80e09d2ba63e12fca54dc81e8a5ae670600aa9f780f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26718176$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26718176$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>VÄÄNÄNEN, JOUKO</creatorcontrib><title>AN EXTENSION OF A THEOREM OF ZERMELO</title><title>The bulletin of symbolic logic</title><description>We show that if (M, ∈1, ∈2) satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ∈1 and also when the membership relation is ∈2, and in both cases the formulas are allowed to contain both ∈1 and ∈2, then (M, ∈1) ≅ (M, ∈2), and the isomorphism is definable in (M, ∈1, ∈2). This extends Zermelo's 1930 theorem in [6].</description><subject>Axioms</subject><subject>Categoricity</subject><subject>Communications</subject><subject>First order theories</subject><subject>Hypotheses</subject><subject>Isomorphism</subject><subject>Logical theorems</subject><subject>Mathematical logic</subject><subject>Mathematical relations</subject><subject>Mathematical set theory</subject><subject>Mathematical theorems</subject><subject>Set theory</subject><subject>Symmetry</subject><subject>Theorems</subject><subject>Zermelo Frankel set theory</subject><issn>1079-8986</issn><issn>1943-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LAzEURYMoWKsr18KA7mTqe_nOciipLbQdqBXETUinCViqU5N24b93SsXVuw8O98Ih5BZhgIDqaZW3AwpoBijOSA8NZ6XQhp93GZQptdHyklzlvAFALrnokYdqXti3pZ2_TOp5UY-KqliObb2ws-PzbhczO62vyUX02xxu_m6fvI7scjgup_XzZFhNy4ZR2JdRUaW9DsJHpkPjJV_LlYYAZk1XXrKANDZe8HWjMWgvfJAKJID3JioNkfXJ_al3l9rvQ8h7t2kP6aubdJRKRhkYyTvq8UQ1qc05heh26ePTpx-H4I4aXKfBHTU4FB19d6I3ed-mf5RKhRqVZL9EQ1S4</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>VÄÄNÄNEN, JOUKO</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABJCF</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20190601</creationdate><title>AN EXTENSION OF A THEOREM OF ZERMELO</title><author>VÄÄNÄNEN, JOUKO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-f7278a8e5af38eca64d6b80e09d2ba63e12fca54dc81e8a5ae670600aa9f780f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Axioms</topic><topic>Categoricity</topic><topic>Communications</topic><topic>First order theories</topic><topic>Hypotheses</topic><topic>Isomorphism</topic><topic>Logical theorems</topic><topic>Mathematical logic</topic><topic>Mathematical relations</topic><topic>Mathematical set theory</topic><topic>Mathematical theorems</topic><topic>Set theory</topic><topic>Symmetry</topic><topic>Theorems</topic><topic>Zermelo Frankel set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VÄÄNÄNEN, JOUKO</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The bulletin of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VÄÄNÄNEN, JOUKO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN EXTENSION OF A THEOREM OF ZERMELO</atitle><jtitle>The bulletin of symbolic logic</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>25</volume><issue>2</issue><spage>208</spage><epage>212</epage><pages>208-212</pages><issn>1079-8986</issn><eissn>1943-5894</eissn><abstract>We show that if (M, ∈1, ∈2) satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ∈1 and also when the membership relation is ∈2, and in both cases the formulas are allowed to contain both ∈1 and ∈2, then (M, ∈1) ≅ (M, ∈2), and the isomorphism is definable in (M, ∈1, ∈2). This extends Zermelo's 1930 theorem in [6].</abstract><cop>New York</cop><pub>Cambridge University Press</pub><doi>10.1017/bsl.2019.15</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1079-8986
ispartof The bulletin of symbolic logic, 2019-06, Vol.25 (2), p.208-212
issn 1079-8986
1943-5894
language eng
recordid cdi_proquest_journals_2263230964
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Cambridge University Press Journals Complete
subjects Axioms
Categoricity
Communications
First order theories
Hypotheses
Isomorphism
Logical theorems
Mathematical logic
Mathematical relations
Mathematical set theory
Mathematical theorems
Set theory
Symmetry
Theorems
Zermelo Frankel set theory
title AN EXTENSION OF A THEOREM OF ZERMELO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20EXTENSION%20OF%20A%20THEOREM%20OF%20ZERMELO&rft.jtitle=The%20bulletin%20of%20symbolic%20logic&rft.au=V%C3%84%C3%84N%C3%84NEN,%20JOUKO&rft.date=2019-06-01&rft.volume=25&rft.issue=2&rft.spage=208&rft.epage=212&rft.pages=208-212&rft.issn=1079-8986&rft.eissn=1943-5894&rft_id=info:doi/10.1017/bsl.2019.15&rft_dat=%3Cjstor_proqu%3E26718176%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2263230964&rft_id=info:pmid/&rft_jstor_id=26718176&rfr_iscdi=true