AN EXTENSION OF A THEOREM OF ZERMELO
We show that if (M, ∈1, ∈2) satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ∈1 and also when the membership relation is ∈2, and in both cases the formulas are allowed to contain both ∈1 and ∈2, then (M, ∈1) ≅ (M, ∈2), and the isomorphism is definable i...
Gespeichert in:
Veröffentlicht in: | The bulletin of symbolic logic 2019-06, Vol.25 (2), p.208-212 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | 2 |
container_start_page | 208 |
container_title | The bulletin of symbolic logic |
container_volume | 25 |
creator | VÄÄNÄNEN, JOUKO |
description | We show that if (M, ∈1, ∈2) satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ∈1 and also when the membership relation is ∈2, and in both cases the formulas are allowed to contain both ∈1 and ∈2, then (M, ∈1) ≅ (M, ∈2), and the isomorphism is definable in (M, ∈1, ∈2). This extends Zermelo's 1930 theorem in [6]. |
doi_str_mv | 10.1017/bsl.2019.15 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2263230964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26718176</jstor_id><sourcerecordid>26718176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-f7278a8e5af38eca64d6b80e09d2ba63e12fca54dc81e8a5ae670600aa9f780f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKsr18KA7mTqe_nOciipLbQdqBXETUinCViqU5N24b93SsXVuw8O98Ih5BZhgIDqaZW3AwpoBijOSA8NZ6XQhp93GZQptdHyklzlvAFALrnokYdqXti3pZ2_TOp5UY-KqliObb2ws-PzbhczO62vyUX02xxu_m6fvI7scjgup_XzZFhNy4ZR2JdRUaW9DsJHpkPjJV_LlYYAZk1XXrKANDZe8HWjMWgvfJAKJID3JioNkfXJ_al3l9rvQ8h7t2kP6aubdJRKRhkYyTvq8UQ1qc05heh26ePTpx-H4I4aXKfBHTU4FB19d6I3ed-mf5RKhRqVZL9EQ1S4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2263230964</pqid></control><display><type>article</type><title>AN EXTENSION OF A THEOREM OF ZERMELO</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Cambridge University Press Journals Complete</source><creator>VÄÄNÄNEN, JOUKO</creator><creatorcontrib>VÄÄNÄNEN, JOUKO</creatorcontrib><description>We show that if (M, ∈1, ∈2) satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ∈1 and also when the membership relation is ∈2, and in both cases the formulas are allowed to contain both ∈1 and ∈2, then (M, ∈1) ≅ (M, ∈2), and the isomorphism is definable in (M, ∈1, ∈2). This extends Zermelo's 1930 theorem in [6].</description><identifier>ISSN: 1079-8986</identifier><identifier>EISSN: 1943-5894</identifier><identifier>DOI: 10.1017/bsl.2019.15</identifier><language>eng</language><publisher>New York: Cambridge University Press</publisher><subject>Axioms ; Categoricity ; Communications ; First order theories ; Hypotheses ; Isomorphism ; Logical theorems ; Mathematical logic ; Mathematical relations ; Mathematical set theory ; Mathematical theorems ; Set theory ; Symmetry ; Theorems ; Zermelo Frankel set theory</subject><ispartof>The bulletin of symbolic logic, 2019-06, Vol.25 (2), p.208-212</ispartof><rights>2019, Association for Symbolic Logic</rights><rights>Copyright © The Association for Symbolic Logic 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-f7278a8e5af38eca64d6b80e09d2ba63e12fca54dc81e8a5ae670600aa9f780f3</citedby><cites>FETCH-LOGICAL-c320t-f7278a8e5af38eca64d6b80e09d2ba63e12fca54dc81e8a5ae670600aa9f780f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26718176$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26718176$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>VÄÄNÄNEN, JOUKO</creatorcontrib><title>AN EXTENSION OF A THEOREM OF ZERMELO</title><title>The bulletin of symbolic logic</title><description>We show that if (M, ∈1, ∈2) satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ∈1 and also when the membership relation is ∈2, and in both cases the formulas are allowed to contain both ∈1 and ∈2, then (M, ∈1) ≅ (M, ∈2), and the isomorphism is definable in (M, ∈1, ∈2). This extends Zermelo's 1930 theorem in [6].</description><subject>Axioms</subject><subject>Categoricity</subject><subject>Communications</subject><subject>First order theories</subject><subject>Hypotheses</subject><subject>Isomorphism</subject><subject>Logical theorems</subject><subject>Mathematical logic</subject><subject>Mathematical relations</subject><subject>Mathematical set theory</subject><subject>Mathematical theorems</subject><subject>Set theory</subject><subject>Symmetry</subject><subject>Theorems</subject><subject>Zermelo Frankel set theory</subject><issn>1079-8986</issn><issn>1943-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LAzEURYMoWKsr18KA7mTqe_nOciipLbQdqBXETUinCViqU5N24b93SsXVuw8O98Ih5BZhgIDqaZW3AwpoBijOSA8NZ6XQhp93GZQptdHyklzlvAFALrnokYdqXti3pZ2_TOp5UY-KqliObb2ws-PzbhczO62vyUX02xxu_m6fvI7scjgup_XzZFhNy4ZR2JdRUaW9DsJHpkPjJV_LlYYAZk1XXrKANDZe8HWjMWgvfJAKJID3JioNkfXJ_al3l9rvQ8h7t2kP6aubdJRKRhkYyTvq8UQ1qc05heh26ePTpx-H4I4aXKfBHTU4FB19d6I3ed-mf5RKhRqVZL9EQ1S4</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>VÄÄNÄNEN, JOUKO</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABJCF</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20190601</creationdate><title>AN EXTENSION OF A THEOREM OF ZERMELO</title><author>VÄÄNÄNEN, JOUKO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-f7278a8e5af38eca64d6b80e09d2ba63e12fca54dc81e8a5ae670600aa9f780f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Axioms</topic><topic>Categoricity</topic><topic>Communications</topic><topic>First order theories</topic><topic>Hypotheses</topic><topic>Isomorphism</topic><topic>Logical theorems</topic><topic>Mathematical logic</topic><topic>Mathematical relations</topic><topic>Mathematical set theory</topic><topic>Mathematical theorems</topic><topic>Set theory</topic><topic>Symmetry</topic><topic>Theorems</topic><topic>Zermelo Frankel set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VÄÄNÄNEN, JOUKO</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The bulletin of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VÄÄNÄNEN, JOUKO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN EXTENSION OF A THEOREM OF ZERMELO</atitle><jtitle>The bulletin of symbolic logic</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>25</volume><issue>2</issue><spage>208</spage><epage>212</epage><pages>208-212</pages><issn>1079-8986</issn><eissn>1943-5894</eissn><abstract>We show that if (M, ∈1, ∈2) satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ∈1 and also when the membership relation is ∈2, and in both cases the formulas are allowed to contain both ∈1 and ∈2, then (M, ∈1) ≅ (M, ∈2), and the isomorphism is definable in (M, ∈1, ∈2). This extends Zermelo's 1930 theorem in [6].</abstract><cop>New York</cop><pub>Cambridge University Press</pub><doi>10.1017/bsl.2019.15</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-8986 |
ispartof | The bulletin of symbolic logic, 2019-06, Vol.25 (2), p.208-212 |
issn | 1079-8986 1943-5894 |
language | eng |
recordid | cdi_proquest_journals_2263230964 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; Cambridge University Press Journals Complete |
subjects | Axioms Categoricity Communications First order theories Hypotheses Isomorphism Logical theorems Mathematical logic Mathematical relations Mathematical set theory Mathematical theorems Set theory Symmetry Theorems Zermelo Frankel set theory |
title | AN EXTENSION OF A THEOREM OF ZERMELO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20EXTENSION%20OF%20A%20THEOREM%20OF%20ZERMELO&rft.jtitle=The%20bulletin%20of%20symbolic%20logic&rft.au=V%C3%84%C3%84N%C3%84NEN,%20JOUKO&rft.date=2019-06-01&rft.volume=25&rft.issue=2&rft.spage=208&rft.epage=212&rft.pages=208-212&rft.issn=1079-8986&rft.eissn=1943-5894&rft_id=info:doi/10.1017/bsl.2019.15&rft_dat=%3Cjstor_proqu%3E26718176%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2263230964&rft_id=info:pmid/&rft_jstor_id=26718176&rfr_iscdi=true |