AN EXTENSION OF A THEOREM OF ZERMELO
We show that if (M, ∈1, ∈2) satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ∈1 and also when the membership relation is ∈2, and in both cases the formulas are allowed to contain both ∈1 and ∈2, then (M, ∈1) ≅ (M, ∈2), and the isomorphism is definable i...
Gespeichert in:
Veröffentlicht in: | The bulletin of symbolic logic 2019-06, Vol.25 (2), p.208-212 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that if (M, ∈1, ∈2) satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ∈1 and also when the membership relation is ∈2, and in both cases the formulas are allowed to contain both ∈1 and ∈2, then (M, ∈1) ≅ (M, ∈2), and the isomorphism is definable in (M, ∈1, ∈2). This extends Zermelo's 1930 theorem in [6]. |
---|---|
ISSN: | 1079-8986 1943-5894 |
DOI: | 10.1017/bsl.2019.15 |