AN EXTENSION OF A THEOREM OF ZERMELO

We show that if (M, ∈1, ∈2) satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ∈1 and also when the membership relation is ∈2, and in both cases the formulas are allowed to contain both ∈1 and ∈2, then (M, ∈1) ≅ (M, ∈2), and the isomorphism is definable i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The bulletin of symbolic logic 2019-06, Vol.25 (2), p.208-212
1. Verfasser: VÄÄNÄNEN, JOUKO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that if (M, ∈1, ∈2) satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ∈1 and also when the membership relation is ∈2, and in both cases the formulas are allowed to contain both ∈1 and ∈2, then (M, ∈1) ≅ (M, ∈2), and the isomorphism is definable in (M, ∈1, ∈2). This extends Zermelo's 1930 theorem in [6].
ISSN:1079-8986
1943-5894
DOI:10.1017/bsl.2019.15