Asymptotic Approximant for the Falkner-Skan Boundary-Layer equation
We demonstrate that the asymptotic approximant applied to the Blasius boundary layer flow over a flat plat (Barlow et al., 2017 Q. J. Mech. Appl. Math., 70(1): 21-48) yields accurate analytic closed-form solutions to the Falkner-Skan boundary layer equation for flow over a wedge having angle \(\beta...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-07 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate that the asymptotic approximant applied to the Blasius boundary layer flow over a flat plat (Barlow et al., 2017 Q. J. Mech. Appl. Math., 70(1): 21-48) yields accurate analytic closed-form solutions to the Falkner-Skan boundary layer equation for flow over a wedge having angle \(\beta\pi/2\) to the horizontal. A wide range of wedge angles satisfying \(\beta\in[-0.198837735, 1]\) are considered, and the previously established non-unique solutions for \(\beta |
---|---|
ISSN: | 2331-8422 |