Asymptotic Approximant for the Falkner-Skan Boundary-Layer equation

We demonstrate that the asymptotic approximant applied to the Blasius boundary layer flow over a flat plat (Barlow et al., 2017 Q. J. Mech. Appl. Math., 70(1): 21-48) yields accurate analytic closed-form solutions to the Falkner-Skan boundary layer equation for flow over a wedge having angle \(\beta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-07
Hauptverfasser: Belden, Elizabeth R, Dickman, Zachary A, Weinstein, Steven J, Archibee, Alex D, Burroughs, Ethan, Barlow, Nathaniel S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate that the asymptotic approximant applied to the Blasius boundary layer flow over a flat plat (Barlow et al., 2017 Q. J. Mech. Appl. Math., 70(1): 21-48) yields accurate analytic closed-form solutions to the Falkner-Skan boundary layer equation for flow over a wedge having angle \(\beta\pi/2\) to the horizontal. A wide range of wedge angles satisfying \(\beta\in[-0.198837735, 1]\) are considered, and the previously established non-unique solutions for \(\beta
ISSN:2331-8422