Gas-surface interactions of atomic nitrogen with vitreous carbon
We have conducted beam-surface scattering experiments with the intent of identifying the reaction mechanisms that are relevant to the ablation of carbon by N atoms at surface temperatures relevant to hypersonic flight. A pulsed molecular beam containing N and N2 with translational energies of 460 an...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2019-09, Vol.150, p.85-92 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have conducted beam-surface scattering experiments with the intent of identifying the reaction mechanisms that are relevant to the ablation of carbon by N atoms at surface temperatures relevant to hypersonic flight. A pulsed molecular beam containing N and N2 with translational energies of 460 and 808 kJ mol-1, respectively, was directed at a vitreous carbon surface held at temperatures in the range 1023–1923 K. Time-of-flight distributions were collected for scattered products with fixed incidence and final angles of θi = θf = 45°. Inelastically scattered N and N2 and reactively scattered CN were the only products observed. The scattering dynamics of N and N2 were independent of surface temperature and were indicative of purely impulsive scattering. The scattering dynamics of CN suggested that this reaction product is formed by a mechanism that occurs in thermal equilibrium with the surface – i.e., a Langmuir-Hinshelwood mechanism. The reaction probability to produce CN has an Arrhenius temperature dependence with an activation energy of 207 kJ mol-1. The relevance of the current results to the hypersonic ablation of carbon in the presence of dissociated air is discussed.
[Display omitted] |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2019.04.117 |