The weighted sum method for multi-objective optimization: new insights
As a common concept in multi-objective optimization, minimizing a weighted sum constitutes an independent method as well as a component of other methods. Consequently, insight into characteristics of the weighted sum method has far reaching implications. However, despite the many published applicati...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2010-06, Vol.41 (6), p.853-862 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a common concept in multi-objective optimization, minimizing a weighted sum constitutes an independent method as well as a component of other methods. Consequently, insight into characteristics of the weighted sum method has far reaching implications. However, despite the many published applications for this method and the literature addressing its pitfalls with respect to depicting the Pareto optimal set, there is little comprehensive discussion concerning the conceptual significance of the weights and techniques for maximizing the effectiveness of the method with respect to a priori articulation of preferences. Thus, in this paper, we investigate the fundamental significance of the weights in terms of preferences, the Pareto optimal set, and objective-function values. We determine the factors that dictate which solution point results from a particular set of weights. Fundamental deficiencies are identified in terms of a priori articulation of preferences, and guidelines are provided to help avoid blind use of the method. |
---|---|
ISSN: | 1615-147X 1615-1488 |
DOI: | 10.1007/s00158-009-0460-7 |