Approximate multi-objective optimization using conservative and feasible moving least squares method: application to automotive knuckle design

The original version of the moving least squares method (MLSM) does not always ensure solution feasibility for nonlinear and/or non-convex functions in the context of meta-model-based approximate optimization. The paper explores a new implementation of MLSM that ensures the conservative feasibility...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2014-05, Vol.49 (5), p.851-861
Hauptverfasser: Song, Chang Yong, Choi, Ha-Young, Lee, Jongsoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The original version of the moving least squares method (MLSM) does not always ensure solution feasibility for nonlinear and/or non-convex functions in the context of meta-model-based approximate optimization. The paper explores a new implementation of MLSM that ensures the conservative feasibility of Pareto optimal solutions in non-dominated sorting genetic algorithm (NSGA-II)-based approximate multi-objective optimization. We devised a ‘conservative and feasible MLSM’ (CF-MLSM) to realize the conservativeness and feasibility of multi-objective Pareto optimal solutions for both unconstrained and constrained problems. We verified the usefulness of our proposed approach by exploring strength-based sizing optimization of an automotive knuckle component under bump and brake loading constraints.
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-013-1009-3