Approximate multi-objective optimization using conservative and feasible moving least squares method: application to automotive knuckle design
The original version of the moving least squares method (MLSM) does not always ensure solution feasibility for nonlinear and/or non-convex functions in the context of meta-model-based approximate optimization. The paper explores a new implementation of MLSM that ensures the conservative feasibility...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2014-05, Vol.49 (5), p.851-861 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The original version of the moving least squares method (MLSM) does not always ensure solution feasibility for nonlinear and/or non-convex functions in the context of meta-model-based approximate optimization. The paper explores a new implementation of MLSM that ensures the conservative feasibility of Pareto optimal solutions in non-dominated sorting genetic algorithm (NSGA-II)-based approximate multi-objective optimization. We devised a ‘conservative and feasible MLSM’ (CF-MLSM) to realize the conservativeness and feasibility of multi-objective Pareto optimal solutions for both unconstrained and constrained problems. We verified the usefulness of our proposed approach by exploring strength-based sizing optimization of an automotive knuckle component under bump and brake loading constraints. |
---|---|
ISSN: | 1615-147X 1615-1488 |
DOI: | 10.1007/s00158-013-1009-3 |