Multiobjective optimization of modular design concepts for a collection of interacting systems
A collection of interacting systems, such as a fleet of military vehicles, can have a life-cycle benefit from sharing interoperable modules. Defining the modules that maximize such benefits must be addressed at the early stages of system design. We present a multi-objective optimization framework fo...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2018, Vol.57 (1), p.83-94 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A collection of interacting systems, such as a fleet of military vehicles, can have a life-cycle benefit from sharing interoperable modules. Defining the modules that maximize such benefits must be addressed at the early stages of system design. We present a multi-objective optimization framework for conceptual modular design. We use a functional representation of the supersystem, i.e., the interacting systems collection, to make module design decisions informed by supersystem requirements and life-cycle objectives. The resultant modules are configured into a variety of architectures and form a set of systems with distinct capabilities that meet supersystem requirements. We apply this approach on a fleet of military vehicles. Computational results quantify the intuition that designing a large number of smaller modules reduces overall fleet weight and increases required personnel resources because of larger demand for vehicle reconfiguration. |
---|---|
ISSN: | 1615-147X 1615-1488 |
DOI: | 10.1007/s00158-017-1872-4 |