Orthotropic material orientation optimization method in composite laminates

This paper proposes a optimization method that is capable of simultaneous design of multiple layers in a composite laminate with respect to multiple objective functions. The optimization process obtains a continuous orientation of an orthotropic material for each layer of the laminate. Each layer by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2018-02, Vol.57 (2), p.815-828
Hauptverfasser: Petrovic, Mario, Nomura, Tsuyoshi, Yamada, Takayuki, Izui, Kazuhiro, Nishiwaki, Shinji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a optimization method that is capable of simultaneous design of multiple layers in a composite laminate with respect to multiple objective functions. The optimization process obtains a continuous orientation of an orthotropic material for each layer of the laminate. Each layer by itself is a single design domain, which allows multiple domains to be stacked in various orientations. Multiple optimization objectives are considered resulting in layers that perform different functions. The layers are modeled within a three-dimensional structure and by discretizing the structure using three-dimensional elements, the interaction between individual layers can be modeled. This also allows the optimization method to obtain a three-dimensional orientation vector. In this study, the individual layers are assumed to be thin, limiting the orientation vector to the mid-plane of the layer. The optimization model is tested on a two-layer laminate in which one layer is optimized for thermal control by directing heat toward specified sections while shielding other sections and the second layer is optimized to reduce the total deformation of the laminate structure that results from the thermal load. The results of simultaneous optimization for both layers are shown for several different configurations of boundary conditions.
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-017-1777-2