A cooperative radial basis function method for variable-fidelity surrogate modeling

By coupling the low-fidelity (LF) model with the high-fidelity (HF) samples, the variable-fidelity model (VFM) offers an efficient way to overcome the expensive computing challenge in multidisciplinary design optimization (MDO). In this paper, a cooperative radial basis function (Co-RBF) method for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2017-11, Vol.56 (5), p.1077-1092
Hauptverfasser: Li, Xu, Gao, Wenkun, Gu, Liangxian, Gong, Chunlin, Jing, Zhao, Su, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By coupling the low-fidelity (LF) model with the high-fidelity (HF) samples, the variable-fidelity model (VFM) offers an efficient way to overcome the expensive computing challenge in multidisciplinary design optimization (MDO). In this paper, a cooperative radial basis function (Co-RBF) method for the VFM is proposed by modifying the basis function of RBF. The RBF method is constructed on the HF samples, while the Co-RBF method incorporates the entire information of the LF model with the HF samples. In Co-RBF, the LF model is regard as a basis function of Co-RBF and the HF samples are utilized to compute the Co-RBF model coefficients. Two numerical functions and three engineering problems are adopted to verify the proposed Co-RBF method. The predictive results of Co-RBF are compared with those of RBF and Co-Kriging, which show that the Co-RBF method improves the efficiency, accuracy and robustness of the existing VFMs.
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-017-1704-6