A particle swarm optimization approach to optimize component placement in printed circuit board assembly
The particle swarm optimization (PSO) approach has been successfully applied in continuous problems in practice. However, its application on the combinatorial search space is relatively new. The component assignment/sequencing problem in printed circuit board (PCB) has been verified as NP-hard (non-...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2007-12, Vol.35 (5-6), p.610-620 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The particle swarm optimization (PSO) approach has been successfully applied in continuous problems in practice. However, its application on the combinatorial search space is relatively new. The component assignment/sequencing problem in printed circuit board (PCB) has been verified as NP-hard (non-deterministic polynomial time). This paper presents an adaptive particle swarm optimization (APSO) approach to optimize the sequence of component placements on a PCB and the assignment of component types to feeders simultaneously for a pick-and-place machine with multiple heads. The objective of the problem is to minimize the total traveling distance (the traveling time) and the total change time of head nozzle. The APSO proposed in the paper incorporates three heuristics, namely, head assignment algorithm, reel grouping optimization and adaptive particle swarm optimization. Compared with the results obtained by other research, the performance of APSO is not worse than the performance of genetic algorithms (GA) in terms of the distance traveled by the placement head. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-006-0777-y |