A bicriterian flow shop scheduling using artificial neural network

This paper considers the sequencing of jobs that arrive in a flow shop in different combinations over time. Artificial neural network (ANN) uses its acquired sequencing knowledge in making the future sequencing decisions. The paper focuses on scheduling for a flow shop with ‘m’ machines and ‘n’ jobs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2006-10, Vol.30 (11-12), p.1132-1138
Hauptverfasser: Noorul Haq, A., Radha Ramanan, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the sequencing of jobs that arrive in a flow shop in different combinations over time. Artificial neural network (ANN) uses its acquired sequencing knowledge in making the future sequencing decisions. The paper focuses on scheduling for a flow shop with ‘m’ machines and ‘n’ jobs. The authors have used the heuristics proposed by Campbell et al.(1970, A heuristic algorithm for n-jobs m-machines sequencing problem) to find a sequence and makespan (MS). Then a pair wise interchange of jobs is made to find the optimal MS and total flow time (TFT). The obtained sequence is used for giving training to the neural network and a matrix called neural network master matrix (NNMM) is constructed, which is the basic knowledge of the neurons obtained after training. From the matrix, interpretations are made to determine the optimum sequence for the jobs that arrive in the future over a period of time. The results obtained by the ANN are compared with a constructive heuristics and an improvement heuristics. The results show that the quality of the measure of performance is better when ANN approach is used than obtained by constructive or improvement heuristics. It is found that the system’s efficiency (i.e., obtaining the optimal MS and TFT) increases with increasing numbers of training exemplars.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-005-0135-5