Modeling of twist drills in terms of 3D angles
Traditional nomenclatures of specifying cutting tool geometries are two-dimensional (2D) in nature. The present work presents a paradigm to model the geometries of a variety of twist drills in terms of three-dimensional (3D) parameters. The work outlines the construction of a detailed computer-aided...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2008-08, Vol.38 (5-6), p.543-550 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional nomenclatures of specifying cutting tool geometries are two-dimensional (2D) in nature. The present work presents a paradigm to model the geometries of a variety of twist drills in terms of three-dimensional (3D) parameters. The work outlines the construction of a detailed computer-aided design (CAD) model for a fluted twist drill and establishes a new 3D definition for the geometry of drill in terms of biparametric surface patches. The flutes of the drill are modeled as helicoidal surfaces. For this, sectional geometry of tip-to-tip profile is developed and then swept. The geometric model of the shank is developed separately. The transitional surfaces are modeled as bicubic Bèzier surfaces. With this methodology, we propose a new 3D nomenclature for drill geometries in terms of 3D rotational angles. The relations necessary to map the proposed three-dimensional angles to two-dimensional conventional angles, known as forward mapping and their reverse relations (inverse mapping) are also developed. The new paradigm offers immense technological advantages in terms of numerous downstream applications. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-007-1150-5 |