Vibration reduction control of a voice coil motor (VCM)-driven actuator for SPM applications
This paper presents vibration reduction control of a voice coil motor (VCM)-driven actuator for SPM applications. We had developed a VCM nanoscanner. The scanner has flexure hinges structure. However, the VCM nanoscanner has some problems of thermal drift and small damping compared to the PZT driven...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2010-02, Vol.46 (9-12), p.923-930 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents vibration reduction control of a voice coil motor (VCM)-driven actuator for SPM applications. We had developed a VCM nanoscanner. The scanner has flexure hinges structure. However, the VCM nanoscanner has some problems of thermal drift and small damping compared to the PZT driven nanoscanner. Especially, the small damping coefficient of the VCM nanoscanner causes mechanical vibration when the control input signal is near to the resonance frequencies of the scanner. Additionally, disturbance to the VCM scanner and electronic noise in the sensor also causes the mechanical vibration when they are near to the resonant frequencies. The mechanical vibration reduces the servo bandwidth as well as the accuracy, which deteriorates the AFM image of the samples. We design input shaping prefilter to reduce the signal applied to the VCM nanoscanner and electronic noise in the sensor whose frequency is close to the resonant frequency of the VCM nanoscanner. We measure the time and frequency response of the VCM scanner without using the prefilter and with using the prefilter. Finally, the topology images of a bare wafer are measured and compared using the AFM. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-009-2042-7 |