A study on the magneto-assisted spiral polishing on the inner wall of the bore with magnetic hot melt adhesive particles (MHMA particles)
The spiral polishing mechanism employed a fast turning screw rod to drive the abrasive for workpiece surface polishing. In this study, the powerful ring magnet installed around the workpiece would attract the self-developed magnetic hot melt adhesive particles (MHMA particles) during the process of...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2013-11, Vol.69 (5-8), p.1791-1801 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The spiral polishing mechanism employed a fast turning screw rod to drive the abrasive for workpiece surface polishing. In this study, the powerful ring magnet installed around the workpiece would attract the self-developed magnetic hot melt adhesive particles (MHMA particles) during the process of polishing, driving the SiC particles against the workpiece, the inner wall of the bore. At the same time, the flexibility of MHMA particles helped improve the surface quality of the bore by preventing the SiC particles from heavily scratching it. The effects of magnetic flux density, size and concentration of SiC particles, concentration of MHMA particles, viscosity of silicone oil, revolution speed of the spindle as well as machining time and machining gap on operation temperature, slurry viscosity, surface roughness, and material removal were discussed and the best parameter combination was identified based on the results of the experiment. The effects of each machining parameter on the finished surface topography of the workpiece were also examined. Both analysis of variance and
F
-test indicated that magnetic flux density and the concentration of MHMA particles were the two most important variables affecting the surface roughness. In other words, magnetic force helped improve spiral polishing. Furthermore, the results showed that adding new MHMA particles to the slurry greatly improved the surface quality, at a rate of 90 %, and reduced the workpiece surface roughness from 0.9 μm down to 0.094 μm. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-013-5139-y |