High efficiency deep grinding with very high removal rates

High efficiency deep grinding (HEDG) achieves very high removal rates with moderate temperature rise. It is shown that key factors are high wheel speeds, large depths of cut and moderately high work speeds. High removal rates in HEDG are associated with very efficient grinding and very low specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2013-06, Vol.66 (9-12), p.1367-1377
Hauptverfasser: Batako, Andre D. L., Morgan, M. N., Rowe, Brian W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High efficiency deep grinding (HEDG) achieves very high removal rates with moderate temperature rise. It is shown that key factors are high wheel speeds, large depths of cut and moderately high work speeds. High removal rates in HEDG are associated with very efficient grinding and very low specific energy compared to conventional grinding. Although HEDG-enabled machine tools are available, the wider adoption of HEDG requires confidence that high workpiece surface integrity is achievable and sustainable. HEDG is an aggressive machining process that requires a suitable machine tool and workpiece configuration. System requirements include a high-powered spindle drive motor also capable of high spindle speeds, a stiff machine structure, wear-resistant grinding wheels and high-capacity pressurized lubricant supply. This paper presents advances in the development of HEDG. Results of HEDG obtained using a newly designed and unique machine tool are presented to illustrate achievable removal rates. Specific grinding energies are shown together with grinding temperatures measured directly in the contact arc. An enhanced single-pole thermocouple technique is used to measure the actual contact temperatures in deep cutting for validation of predictions. New findings illustrate the performance of high-speed conventional wheels in HEDG compared with the performance of CBN wheels obtained from actual industrial tests.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-012-4414-7