An improved artificial neural network for laser welding parameter selection and prediction

In the laser welding production, the selection and prediction of welding parameters is essentially important to guarantee weld quality. Artificial neural networks (ANN), which perform a nonlinear mapping between inputs and outputs, are an alternative approach for developing welding parameter forecas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2013-09, Vol.68 (1-4), p.755-762
Hauptverfasser: Yuguang, Zhong, Kai, Xue, Dongyan, Shi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the laser welding production, the selection and prediction of welding parameters is essentially important to guarantee weld quality. Artificial neural networks (ANN), which perform a nonlinear mapping between inputs and outputs, are an alternative approach for developing welding parameter forecasting model. In this paper, in order to speed up the convergence and avoid local minimum of the conditional ANN, genetic algorithm simulated annealing (GASA) based on the random global optimization is inducted into the network training. By means of GASA method, weights and threshold of neural networks can be globally optimized with short training time. Meanwhile, the gray correlation model (GCM) is used as a pre-processing tool to simplify the original networks based on obtaining the main influence elements of network inputs. The GCM–GASA–ANN method combines the complementary features of three computational intelligence techniques and owns very good applicability. Through the simulation and analysis of an orthogonal experiment, the proposed method can be proved to have higher accuracy and to perform better than the traditional ANN to forecast the laser welding parameters.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-013-4796-1