Chatter stability of micro end milling by considering process nonlinearities and process damping
The micro end milling uses the miniature tools to fabricate complexity microstructures at high rotational speeds. The regenerative chatter, which causes tool wear and poor machining quality, is one of the challenges needed to be solved in the micro end milling process. In order to predict the chatte...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2016-12, Vol.87 (9-12), p.2785-2796 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The micro end milling uses the miniature tools to fabricate complexity microstructures at high rotational speeds. The regenerative chatter, which causes tool wear and poor machining quality, is one of the challenges needed to be solved in the micro end milling process. In order to predict the chatter stability of micro end milling, this paper proposes a cutting forces model taking into account the process nonlinearities caused by tool run-out, trajectory of tool tip and intermittency of chip formation, and the process damping effect in the ploughing-dominant and shearing-dominant regimes. Since the elasto-plastic deformation of micro end milling leads to large process damping which will affect the process stability, the process damping is also included in the cutting forces model. The micro end milling process is modeled as a two degrees of freedom system with the dynamic parameters of tool-machine system obtained by the receptance coupling method. According to the calculated cutting forces, the time-domain simulation method is extended to predict the chatter stability lobes diagrams. Finally, the micro end milling experiments of cutting forces and machined surface quality have been investigated to validate the accuracy of the proposed model. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-016-8658-5 |