Out-of-plane neural microelectrode arrays fabrication using conventional blade dicing
This paper describes an optimized out-of-plane fabrication method for neural 3D high-aspect-ratio microelectrode array (MEA) based on a dicing technology platform (a standard procedure in semiconductor industry). The proposed MEA fabrication required important modifications in the dicing process. Si...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2016-07, Vol.85 (1-4), p.431-442 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes an optimized out-of-plane fabrication method for neural 3D high-aspect-ratio microelectrode array (MEA) based on a dicing technology platform (a standard procedure in semiconductor industry). The proposed MEA fabrication required important modifications in the dicing process. Since electrodes length reaches up to 4 mm, the main hindrance was the 2 mm cutting depth limit allowed for dicing machines with regular blades. This new procedure consisted on modifying Z-axis calibration, so cuts as deep as the exposure of blades were possible. The employment of proper blades for each fabrication step was also mandatory. Thin and high-exposure blades were used for deep cuts in silicon wafers, and V-shaped blades were employed to produce sharpened tips on the electrodes. Moreover, parameters as very low-cut speeds were essential to avoid wafer chipping and microcracks. Results showed high-precision and high-quality cuts in all steps of the 3D MEA fabrication, without unnecessary additional steps of etching post-processing. The optimized fabrication process was successfully demonstrated with a 3D neural probe array comprising 36 individually addressable electrodes. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-015-7948-7 |