Out-of-plane neural microelectrode arrays fabrication using conventional blade dicing

This paper describes an optimized out-of-plane fabrication method for neural 3D high-aspect-ratio microelectrode array (MEA) based on a dicing technology platform (a standard procedure in semiconductor industry). The proposed MEA fabrication required important modifications in the dicing process. Si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2016-07, Vol.85 (1-4), p.431-442
Hauptverfasser: Goncalves, S. B., Oliveira, M. J., Peixoto, A. C., Silva, A. F., Correia, J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes an optimized out-of-plane fabrication method for neural 3D high-aspect-ratio microelectrode array (MEA) based on a dicing technology platform (a standard procedure in semiconductor industry). The proposed MEA fabrication required important modifications in the dicing process. Since electrodes length reaches up to 4 mm, the main hindrance was the 2 mm cutting depth limit allowed for dicing machines with regular blades. This new procedure consisted on modifying Z-axis calibration, so cuts as deep as the exposure of blades were possible. The employment of proper blades for each fabrication step was also mandatory. Thin and high-exposure blades were used for deep cuts in silicon wafers, and V-shaped blades were employed to produce sharpened tips on the electrodes. Moreover, parameters as very low-cut speeds were essential to avoid wafer chipping and microcracks. Results showed high-precision and high-quality cuts in all steps of the 3D MEA fabrication, without unnecessary additional steps of etching post-processing. The optimized fabrication process was successfully demonstrated with a 3D neural probe array comprising 36 individually addressable electrodes.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-015-7948-7