Removal of critical regions by radius-varying trochoidal milling with constant cutting forces
This work presents a novel milling strategy for complex pocket machining by integrating radius-varying trochoidal (RVTR) toolpath with contour parallel (CP) toolpath. Based on a quantitative analysis on the fluctuation of material removal rates (MRR), the proposed strategy is able to precisely ident...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2018-09, Vol.98 (1-4), p.671-685 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work presents a novel milling strategy for complex pocket machining by integrating radius-varying trochoidal (RVTR) toolpath with contour parallel (CP) toolpath. Based on a quantitative analysis on the fluctuation of material removal rates (MRR), the proposed strategy is able to precisely identify critical regions from complex pocket geometries, and then by integrating flexible trochoidal radius with adaptive trochoidal step, the proposed approach is able to integrate the RVTR toolpath into CP toolpath under a consistent transition of material removal rate. Moreover, by applying RVTR toolpath, the cutting force can be maintained constantly when machining critical regions. Comparing with the trochoidal milling function available with current mainstream CAM software, experimental investigation has shown that the proposed RVTR-CP toolpath integration strategy offers a better machining condition with minimized fluctuation of cutting forces. Moreover, the total length of toolpath is decreased considerably and hence the machining efficiency is greatly improved. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-018-2298-x |