High-performance spinel LiMn2O4@carbon core–shell cathode materials for Li-ion batteries

A core–shell-type spinel LiMn2O4/carbon composite was synthesized by a simple and cost-effective mechanofusion method (dry particle coating) with a highly uniform coating. Electrochemical characterizations demonstrated that the surface-engineered core–shell-like material exhibited superior rate rete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable energy & fuels 2019, Vol.3 (8), p.1988-1994
Hauptverfasser: Vadivel Selvamani, Phattharasupakun, Nutthaphon, Wutthiprom, Juthaporn, Sawangphruk, Montree
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A core–shell-type spinel LiMn2O4/carbon composite was synthesized by a simple and cost-effective mechanofusion method (dry particle coating) with a highly uniform coating. Electrochemical characterizations demonstrated that the surface-engineered core–shell-like material exhibited superior rate retention as well as cycling stability than pristine LMO due to improved intrinsic conductivity and easy electrolyte access. As a result, in the half-cell configuration, the core–shell carbon composite delivered reversible specific capacity of 103 mA h g−1 after 1000 cycles at 0.75C with 82% capacity retention; however, the pristine material showed specific capacity of 78 mA h g−1 and 76% capacity retention after 600 cycles. Similarly, in the full cell studies, the core–shell material exhibited 70% capacity retention, whereas the pristine material retained only 53% after 1000 cycles at 0.1 A g−1. The spinel LiMn2O4@carbon core–shell material obtained by the mechanofusion method may be a practical cathode material in high-performance lithium-ion batteries toward high energy applications.
ISSN:2398-4902
DOI:10.1039/c9se00274j