Ring-level models for predicting wood and fibre properties of Abies balsamea
Wood and fibre properties such as wood density, microfibril angle, and modulus of elasticity are industrially relevant factors in determining the mechanical properties of wood. Radial ring-level predictive models of these properties were developed using balsam fir data from a long-term trial in New...
Gespeichert in:
Veröffentlicht in: | Wood science and technology 2014-11, Vol.48 (6), p.1181-1196 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wood and fibre properties such as wood density, microfibril angle, and modulus of elasticity are industrially relevant factors in determining the mechanical properties of wood. Radial ring-level predictive models of these properties were developed using balsam fir data from a long-term trial in New Brunswick (Canada), where precommercial thinning was applied 8 years after the site was harvested. The mixed effects models developed accounted for most of the variability in wood density (68 %), microfibril angle (94 %), and modulus of elasticity (77 %) with low RMSE. This study shows that balsam fir wood and fibre properties are strongly related to distance from the pith, particularly in the first 20 mm, and much less to annual ring width. Disk height and selected weather variables related to air temperature during the growing season significantly improved the models, whereas the effect of precommercial thinning was not significant. These equations can be incorporated into computer models, such as Optitek, that simulate mill recovery and wood properties to obtain accurate information on wood products. The unexplained variation in these models is likely related in part to between-tree genetic variation, which is unknown in this study. |
---|---|
ISSN: | 0043-7719 1432-5225 |
DOI: | 10.1007/s00226-014-0664-x |