Luminescence and tenebrescence of natural sodalites: a chemical and structural study
Sodalite (Na 8 Al 6 Si 6 O 24 Cl 2 ) shows a wide range of colours and may exhibit a variety of optical properties including cathodoluminescence, photoluminescence and tenebrescence. These optical peculiarities are not yet fully understood but are of key interest for industry. We provide a detailed...
Gespeichert in:
Veröffentlicht in: | Physics and chemistry of minerals 2016-07, Vol.43 (7), p.459-480 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sodalite (Na
8
Al
6
Si
6
O
24
Cl
2
) shows a wide range of colours and may exhibit a variety of optical properties including cathodoluminescence, photoluminescence and tenebrescence. These optical peculiarities are not yet fully understood but are of key interest for industry. We provide a detailed study on the photochromic properties of natural sodalite, and we show that S is crucially influencing luminescence of sodalites. A reduced intensity in cathodoluminescence was observed at high S contents for some samples, showing that S can act as cathodoluminescence quencher. Photoluminescent sodalites are generally enriched in S compared to non-photoluminescent samples, although few samples being very low in S still show photoluminescence. Additionally, S was found to enlarge the unit cell in natural sodalites which might have a crucial impact on their photochromic properties. The most efficient tenebrescent samples were found to be low in Fe, Mn and S. They showed the smallest unit-cell dimensions, and a strong link between the atomic structure and the formation of F-centres is proposed. Tenebrescence in natural sodalites appears to be enhanced (1) by S but saturated at too high S concentrations and (2) by a stoichiometry and structure close to the ideal sodalite composition. In contrast to the term self-quenching for luminescence, we propose a saturation of F-centres to explain tenebrescence at different S contents. |
---|---|
ISSN: | 0342-1791 1432-2021 |
DOI: | 10.1007/s00269-016-0810-0 |