The effect of pre-shear on the extensional rheology of wormlike micelle solutions

The effect of initial microstructural deformation, alignment, and morphology on the response of wormlike micelle solutions in transient uniaxial extensional flows is investigated using a pre-shear device attached to a filament stretching rheometer. In filament stretching experiments, increasing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rheologica acta 2007-06, Vol.46 (6), p.861-875
Hauptverfasser: BHARDWAJ, Avinash, RICHTER, David, CHELLAMUTHU, Manojkumar, ROTHSTEIN, Jonathan P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of initial microstructural deformation, alignment, and morphology on the response of wormlike micelle solutions in transient uniaxial extensional flows is investigated using a pre-shear device attached to a filament stretching rheometer. In filament stretching experiments, increasing the strength and the duration of the pre-shear just before stretch is found to delay the onset of strain hardening. In these experiments, the wormlike micelle solution filaments fail through a rupture near the axial midplane. The value of the elastic tensile stress at rupture is found to decrease with increasing pre-shear rate and duration. The most dramatic effects are observed at shear rates for which shear banding has been independently observed. The reduction in the strain hardening suggests that pre-shear before filament stretching might break down the wormlike micelles reducing their size before stretch. Strain hardening is also observed in capillary breakup rheometry experiments; however, the pre-sheared wormlike micelle solutions strain harden faster, achieve larger steady-state extensional viscosities and an increase in the extensional relaxation time with increasing shear rate and duration. The difference between the response of the wormlike micelles in filament stretching and capillary breakup experiments demonstrates the sensitivity of these self-assembling micelle networks to pre-conditioning.
ISSN:0035-4511
1435-1528
DOI:10.1007/s00397-007-0168-9