The orientational behavior of multiwall carbon nanotubes in polycarbonate in simple shear flow
This paper describes the changes in the orientation of multiwall carbon nanotubes (MWCNT) in polycarbonate as determined by transient and oscillatory shear rheology. It is well known from rheological studies on composites with macroscopic fibers that the overshoot in transient shear viscosity is cau...
Gespeichert in:
Veröffentlicht in: | Rheologica acta 2010-07, Vol.49 (7), p.769-780 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes the changes in the orientation of multiwall carbon nanotubes (MWCNT) in polycarbonate as determined by transient and oscillatory shear rheology. It is well known from rheological studies on composites with macroscopic fibers that the overshoot in transient shear viscosity is caused by the change in orientation distribution of these fibers. This study shows that although an overshoot in transient shear viscosity of MWCNT/polycarbonate is measured at shear rates as low as 0.1 s
− 1
, the MWCNT network is disturbed only at considerably higher shear rates. Scanning electron microscopy micrographs and oscillatory shear show that MWCNT in thermoplastic composites will only be oriented at high shear rates. Simultaneous measurements of the electrical conductivity during rheological start-up shear and oscillatory measurements show large differences between electrical and mechanical relaxation behaviors. The viscosity of the composite seems to depend strongly on the MWCNT network density, whereas the proximity of the tubes at the network points seems to determine the electrical properties of the MWCNT composite. |
---|---|
ISSN: | 0035-4511 1435-1528 |
DOI: | 10.1007/s00397-010-0457-6 |